Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция механических воздействий

    Коагуляция под влиянием электролитов является наиболее типичным случаем коагуляции и обычно применяется в технике, когда необходимо разрушить коллоидную систему. Однако очень часто коагуляция обусловливается и другими, чисто физическими факторами — механическим воздействием на коллоидную систему, нагреванием или замораживанием золя, разбавлением или концентрированием. Коагуляция может также происходить под влиянием видимого и ультрафиолетового света, рентгеновских лучей, радиоактивного излучения, при действии электрического разряда и ультразвука. Наконец, разрушение системы может наступить спонтанно при длительном хранении коллоидной системы. К сожалению, особенности и механизм безэлектролитной коагуляции до настоящего времени изучены недостаточно. Между тем для понимания явления коагуляции во всех его аспектах, для составления верного представления о его существе подобные исследования могли бы дать очень много. Несомненно, что правильный взгляд на явление может быть установлен лишь при всестороннем его изучении, при подходе к нему с самых различных точек зрения. [c.308]


    Фактором, вызывающим коагуляцию, может быть любой агент, нарушающий агрегативную устойчивость системы, например изменение температуры (сильное нагревание или охлаждение вплоть до замораживания), механическое воздействие (интенсивное встряхивание, перемешивание, перекачивание по трубам), действие света и различного рода излучений, действие электрических разрядов. Однако наиболее важным фактором является действие электролитов. Электролиты, добавляемые к золям, чрезвычайно быстро и резко влияют на толщину ДЭС и на -потенциал, являющийся одним из главных факторов устойчивости гидрофобных коллоидных систем. [c.430]

    Перед сушкой возможно обезвоживание крошки каучука на вакуум-фильтрах или в червячных прессах, причем в последнем случае влажность крошки, поступающей на сушку, уменьшается от 30—35 до 10—15%. Сушка каучуков типа СКС-30, СКС(М)С-ЗОАРКМ-15, СКС-10, буна S-3,4 осуществляется в многоходовых ленточных сушилках, при выпуске других типов каучуков — в червячных сушильных агрегатах (в одночервячных агрегатах типа Андерсон ). В настоящее время разработаны и начинают применяться схемы бессолевой коагуляции, основанной на резкой аста-билизации латекса в кислой среде и разделении фаз (коагуляции) при интенсивном механическом воздействии, в специальных агрегатах, включающих шнековую машину и дезинтегратор. [c.262]

    Пороги коагуляции латексов БНК зависят от содержания акрилонитрила и эмульгатора в системе полимеризации. Необходимая устойчивость латексов к механическим воздействиям достигается при содержании эмульгатора 3 ч. (масс.) на 100 ч. (масс.) мономеров. При этом расход для коагуляции хлорида натрия весьма высок. Применение солей двухвалентных металлов (Са", Mg ) способствует образованию нерастворимых в воде, но растворимых в полимере солей эмульгатора, замедляющих вулканизацию резиновых смесей из БНК- [c.360]

    Факторы коагуляции коллоидных систем могут быть весьма разнообразными. Так, например, коагуляция может быть вызвана повышением температуры, длительным диализом, добавлением электролитов, разного рода механическими воздействиями (размешиванием, встряхиванием, взбалтыванием), сильным охлаждением, ультрацентрифугированием, концентрированием, пропусканием электрического тока, а также действием на данный золь других золей. В ряде случаев коагуляция может происходить в результате чисто химических реакций, протекающих в золях (явление старения). [c.226]

    Коллоидные системы довольно стабильны, в них действуют силы, препятствующие укрупнению мицелл. Однако золь может перейти в гель, т. е. такое состояние, в котором из коллоидного раствора выпадает коллоидно-растворенное вещество. Переход золя в гель называется коагуляцией. Коагуляция (осаждение) — процесс укрупнения мицелл, происходящий под действием броуновского движения она может быть вызвана повышением температуры или концентрации, разного рода механическими воздействиями, введением в данный золь других золей. Время (скорость) коагуляции может быть различным — от долей секунды, когда образование геля проходит практически моментально, до многих дней и недель. Скорость коагуляции определяет строения геля. [c.34]


    Эти закономерности можно объяснить, учитывая структурный фактор агрегативной устойчивости следующим образом. Перемешивание приводит к постепенному разрушению и утончению гидратных прослоек у поверхности частиц, возрастающему с увеличением времени воздействия, и сопровождается ослаблением структурного отталкивания. Вследствие этого устойчивость латекса снижается, что и находит выражение в уменьшении ПБК. Прогрессирующая дегидратация достигает некоторого критического рубежа, за которым следует коагуляция, так как механическое воздействие становится достаточным для преодоления электростатического барьера. Таким образом, индукционный период, предшествующий коагуляции латекса жесткого полимера при иеремешивании, также может быть [c.198]

    Коагуляционные структуры возникают за счет ван-дер-ваальсовых сил притяжения частиц и образуются в результате коагуляции их на расстояниях, отвечающих вторичному минимуму на потенциальной кривой, когда между частицами дисперсной фазы имеются прослойки среды. Наличие таких прослоек в местах контакта между частицами обусловливает относительно небольшую прочность и ярко выраженные пластические свойства структур. Для коагуляционных структур характерны такие специфические свойства, как тиксотропия и реопексия. Тиксотропия — способность структурированной системы восстанавливать во времени свои прочностные свойства после ее механического разрушения. Реопексия — явление, обратное тиксотропии — возникновение и упрочнение структуры в результате механического воздействия. [c.187]

    В общем случае процесс коагуляции зависит от многих условий, в частности, от механического воздействия на коагулирующую систему (перемешивания), от содержания поверхностно-активных веществ (ПАВ) в сточной воде. [c.111]

    Оценка механического воздействия на коагуляцию золя сернистого железа в минерализованной воде (плотность 1,04 и 1,17) давалась по остаточному содержанию взвешенных веществ после перемешивания в течение 20 мин с последующим отстаиванием воды в течение 30 мин. Пробы воды на анализ остаточного содержания сернистого железа отбирались со средней высоты цилиндров. [c.111]

    Процессу коагуляции способствуют повышение температуры, замораживание, механическое воздействие, пропускание электрического тока, старение золя, добавление электролита. Под действием электролита наиболее легко коагулируют золи, у которых основным фактором устойчивости является двойной электрический слой (ДЭС). [c.199]

    Коагуляция коллоидных систем под действием физических факторов. Коагуляция в результате механического воздействия наблюдается при механическом перемешивании коллоидных систем, при перекачке через трубопроводы, ири всасывании через распределительные устройства и т. д. Причины коагуляции обусловлены временным нарушением адсорбционного равновесия стабилизатора у поверхности коллоидных частиц. Это способствует сближению частиц на расстояние, где уже проявляются силы Ван-дер-Ваальса. Это подтверждается тем, что в коагуляте , полученном в результате механической коагуляции, стабилизатора содержится всегда меньше, чем в коагуляте нри коагуляции электролитами. [c.89]

    Коагуляция коллоидных систем может происходить под влиянием ряда факторов — старения системы, изменения концентрации дисперсной фазы, изменения температуры, механических воздействий, света и т. д. Однако наиболее важное теоретическое и практическое значение имеет коагуляция при добавлении электролитов. В нашем курсе мы подробно остановимся только на коагуляции электролитами и лишь вкратце коснемся других причин коагуляции. [c.286]

    В заключение следует сказать несколько слов о разрушении эмульсий. К расслоению системы приводит часто механическое воздействие. Используют методы вытеснения эмульгатора веществом, обладающим большей поверхностной активностью, но меньшей способностью к образованию структурированных слоев, а также все способы, применяемые для коагуляции — увеличение концентрации электролита, дегидратация, вымораживание, электрофоретическое выделение дисперсной фазы. Задача разрушения эмульсий приобретает в настоящее время особую важность в связи с проблемой очистки сточных вод. [c.291]

    Повысить степень очистки нефти, отсепарированной воды и осадка позволяет способ (рис. 12), предложенный в [34]. Нефтешлам перекачивают насосом 1, в поток нефтешлама системой 16 дозируют деэмульгатор. В аппарате 2 нефтешлам обрабатывают переменным магнитным полем, а в подогревателе 3 нагревают и обрабатывают встроенной акустической системой 4. В нагретый поток нефтешлама системой 17 дозируют флокулянт. Нагретый нефтешлам очищают в самоочищающемся фильтре грубой очистки 5, оборудованном акустической системой 6. Под воздействием температуры, деэмульгатора и акустических систем происходит разделение эмульсий, а под воздействием флокулянта — процесс коагуляции механических частиц. Обработанный нефтешлам поступает на двухфазную центрифугу 7, в которой под воздействием [c.41]


    Коагуляция иногда обусловливается механическим воздействием на коллоидную систему, нагреванием или замораживанием золя, его разбавлением или концентрированием. Коагуляция может также происходить под влиянием видимого и ультрафиолетового света, рентгеновских лучей, радиоактивного излучения, при действии электрического разряда и ультразвуковых колебаний. Разрушение системы также может наступить спонтанно, при длительном хранении коллоидной системы. [c.92]

    Коагуляцию коллоидов могут вызвать электролиты и неэлектролиты, изменение температуры, механические воздействия, изменение состава дисперсионной среды, свет и облучение элементарными частицами, электрический ток и другие факторы. Особенно важную роль в коагуляции играют электролиты. [c.112]

    I. Многообразие причин, вызывающих коагуляцию. Едва ли существуют какие-либо внешние воздействия, которые при достаточной интенсивности не вызвали бы коагуляции. Действие теплоты и холода, электромагнитных полей, жестких излучений, механические воздействия, химические агенты приводят к нарушению агрегативной устойчивости и, следовательно, к коагуляции. Все эти воздействия, столь различные но характеру, обладают общим свойством— они разрушают энергетический барьер, и метастабильная система самопроизвольно переходит в более устойчивое состояние в процессе коагуляции. [c.232]

    Коагуляция коллоидных растворов может быть вызвана различными факторами 1) прибавлением электролитов 2) нагреванием или замораживанием 3) механическим воздействием  [c.327]

    Коагуляция может наступить при действии на коллоидную систему таких различных по своей природе факторов, как длительный диализ (очистка золей), добавление растворов электролитов, добавление неэлектролитов, механическое воздействие (размешивание или встряхивание), сильное охлаждение или нагревание, пропускание электрического тока и, наконец, действие лучистой энергии. [c.221]

    На практике часто требуется разрушить эмульсию и выделить ее составные части. В разбавленных эмульсиях, стабилизатором которых является электролит и устойчивость определяется двойным ионным слоем, коалесценция может быть вызвана теми же методами, что и коагуляция коллоидных растворов. Гораздо сложнее разрушить эмульсию, стабилизованную неионогенным эмульгатором. В некоторых случаях расслоение эмульсии можно вызвать нагреванием. При повышении температуры уменьшается адсорбция эмульгатора и тем самым снижается устойчивость эмульсии. Используют также метод вытеснения эмульгатора веществом, обладающим большей адсорбционной способностью, но которое не может образовывать защитную пленку на поверхности капелек дисперсной фазы. К разрушению эмульсии приводит и механическое воздействие — сбивание, центрифугирование, фильтрование. Прибавление к эмульСии электролита, изменяющего природу эмульгатора, также может вызвать ее разрушение. [c.227]

    Коагуляция коллоидных систем может вызываться многими причинами (старение системы, изменение концентрации дисперсной фазы, изменение температуры, механические воздействия, свет и т, д.). Наибольшее теоретическое и практическое значение имеет коагуляция под действием электролитов. Коагуляцию способны вызвать все электролиты, даже те, которые являются стабилизаторами. Необходимо только, чтобы концентрация электролита при этом была настолько велика, чтобы он был способен в достаточной степени сжать двойной электрический слой частиц и тем самым понизить электрический барьер, препятствующий слипанию частиц при их столкновении. [c.13]

    В СВЯЗИ с бурным ростом промышленности синтетических каучуков во всех развитых странах, а также проблемой охраны биосферы, которая приобрела особую остроту за последние годы, в некоторых странах усилились поисковые работы по замене электролитного способа коагуляции другими методами, не приводящими к локальному загрязнению почвы солями, сбрасываемыми со сточными водами (суточный расход электролитов на крупном заводе каучука составляет около 1-10 кг). Помимо метода вымораживания, уже давно реализуемого в промышленности хлоропренового каучука, по-видимому, перспективен метод коагуляции с помощью механических воздействий. [c.171]

    Причиной коагуляции могут быть самые разнообразные факторы изменение температуры и концентрации коллоидного раствора, его старение, механические воздействия, ведение Ь раствор золей с противоположным знаком заряда, добавление электролитов. Наибольшее практическое значение имеет последний фактор. [c.24]

    Коагуляция в результате механического воздействия наблюдается при интенсивном перемешивании коллоидных систем, при перекачке их по трубопроводам и т. п. Причины коагуляции при механическом воздействии обусловлены, вероятно, временным нарушением адсорбционного баланса стабилизатора у поверхности коллоидных частиц. Такие й ггайяЛизованные частицы получают возможность сближаться на расстояние действия молекулярных сил и вследствие этого слипаются друг с другом. Доказательством такого механизма коагуляции служит тот факт, что в коагуляте,, полученном в результате механической коагуляции, стабилизатора содержится всегда меньше, чем в коагуляте, получаемом при коагуляции электролитами. [c.309]

    Коагуляцию могут вызвать введение в коллоидную систему различных по своей природе агентов (добавление электролитов и неэлектролитов) механическое воздействие (перемещивание или встряхивание) нагревание или, наоборот, сильное охлаждение пропускание электрического тока и, наконец, действие лучистой энергии. [c.76]

    Пептизация как процедура подразумевает более или менее сильное механическое воздействие на двухфазную систему — встряхивание, перемещивание, дробление в мельнице. Эти воздействия приведут к желаемому результату — пептизации — только тогда, когда двухфазная система подготовлена к образованию устойчивой взвеси частиц. Подготовка заключается в оптимизации состава жидкой фазы. Состав должен соответствовать критериям, определяющим устойчивость дисперсной системы против коагуляции (с.м. подразделы 3.6 и 3.7). Существуют разные способы пептизации, названия которых отражают именно способ оптимизации состава жидкой фазы адсорбционная пептизация, пептизация поверхностным растворением частиц (диссолюционная пептизация) и пептизация промывкой осадка. Выбор способа зависит от причин, по которым дисперсная фэ.за оказывается в осадке, а не во взвеси. Таких причин две отсутствие в растворе компонентов, способных [c.752]

    Коагуляция моягет происходить при введении различных электролитов и неэлектролитов, механическом воздействии, нагревании или замораживании. Наиболее важное место среди астабилизующих факторов занимает введение электролитов. Электролитная коагуляция особенно ярко протекает в тех коллоидных системах, в которых стабилизатор имеет ионный характер и устойчивость в огромной степени обеспечивается электростатическим отталкиванием коллоидных частиц. Коагулирующее действие электролита заключается в его влиянии на свойства двойного электрического слоя, в результате чего происходит уменьшение электростатического отталкивания частиц, а значит и возможное их слипание. В зависимости от интенсивности коагулирующего влияния электролита возмонша различная вероятность слипания частиц (меньшая или равная единице) и, соответственно, протекает медленная или быстрая коагуляция. Подробное описание механизма и правил электролитной коагуляции излагается в учебниках по коллоидной химии. [c.107]

    Самопроизвольно коагуляция коллоидных систем протекает чрезвычайно медленно. В основном она происходит в результате воздействия внешних факторов — механических воздействий, электрического тока, изменения температуры, жесткого излучения, введения в систему электролитов и неэлектролитов, приводящих к понижению С-потенциала. Начальная стадия, при которой укрупнение частиц не вызывает внешнего изменения золя, что можно оценить только с помощью ультрамикроскопа, называется скрытой коагуляцией. Появление опалесценции, изменение окраски и выделение дисперсной фазы в осадок, называемый коагулятом, характеризует явную коагуляцию. Наибольшее значение -потенциала, при котором коагуляция протекает с заметной скоростью, называется критическим. Для большинства золей оно [c.156]

    Ниже мы кратко рассмотрим наиболее важные иэ них коагуляцию электролитами, механическим воздействием, замораживанием. [c.18]

    Высокая дисперсность асфальтенов создает избыток поверхностной энергии, вследствие чего такие системы термодинамически неустойчивы и стремятся к расслоению на две фазы. При недостаточном стабилизирующем действии окружающей дисперсионной среды частицы асфальтенов предварительно ассоциируются, сцепляясь под действием молекулярных сил в агрегаты, что приводит к потере кинетической устойчивости системы. В значительной степени свойства 1ефтяных остатков как коллоидных систем зависят от степени дисперсности асфальтенов, а в случае крекинг-остатков также от степени дисперсности карбенов и карбоидов. В обычных условиях коллоидная система, состоящая из дисперсной фазы (асфальтены, механические примеси) и дисперсионной среды (высокомолекулярные углеводороды, смолы), термодинамически и кинетически неустойчива тем не менее, расслоение на фазы происходит медленно, что обусловлено в основном свойствами самой системы. Коагуляцию асфальтенов могут вызвать изменение состава дисперсионной среды, изменение температуры, механические воздействия и другие факторы. [c.56]

    Студнеобразные массы золей получили название студней или гелей. Процесс желатинирования является одним из видов коагуляции. Однако от обычной коагуляции он отличается тем, что не образуется осадка частиц дисперсной фазы, а вся масса золя, связывая растворитель, переходит в своеобразное полужидкое состояние. К таким системам можно отнести агар-агар, желатин, крахмал. При повышении температуры они могут снова перейти в золи. Некоторые гели обладают способностью обратимо разжижаться при механических воздействиях на них (встряхивании, перемешивании, вибрировании и т. д.). При встряхивании такой гель снова превращается в золь, последний в спокойном состоянии снова переходит в гель. Такие превращения могут повторяться последовательно много раз. Это явление получило название ттсотротш. [c.58]

    Факторы коагуляции коллоидных систем бывают весьма разнообразными. Коагуляция может быть вызвана повышением температуры, длительным диализом, добавлением электролитов, разного рода механическими воздействиями (размешиванием, встряхиванием, взбалтыванием), сильным охлаждением, ультрацен-трифугиронанием, концентрированием, пропусканием электрического тока, а также действием на данный золь других золей. В ряде случаев коагуляция может происходить в результате химических реакций, протекающих в золях (явление старения). Поскольку главное условие уменьшения устойчивости коллоидных растворов— потеря электрического заряда, основными методами их коагулирования являются методы снятия зарядов. Чаще всего в практике для этой цели пользуются воздействием иа коллоидные растворы различных электролитов. [c.367]

    ТИКСОТРОПИЯ — способность некоторых дисперсных систем обратимо разжижаться при достаточно интенсивных механических воздействиях и отвердевать при пребывании в покое. Т.— характерное свойство коагуляционных структур, т. е. пространственных сеток, образованных твердыми частицами, соприкасающимися лншь в отдельных точках через тончайшие прослойки воды. Примерами типичных тиксотропных структур являются системы, образующиеся при коагуляции водных коллоидных дисперсий гидроксидов железа и алюминия, пентоксида ванадия, суспензий бентонитовой глины, каолина и др. Т. дисперсных систем имеет большое практическое значение. Этими свойствами должны обладать консистентные смазки, лакокрасочные материалы, керамические массы, промывные растворы, применяемые при бурении скважин, многие пищевые продукты. [c.249]

    По Лоттермозеру, на коагуляцию при замораживании влияет не столько температура, сколько степень превращения раствора в кристаллическую массу. Лоттермозер считает, что при замерзании вода образует между коллоидными частицами микроскопичег ские кристаллы. Вследствие увеличения объема в замороженной системе могут развиваться большие давления. Частицы дисперсной фазы, спрессованные в результате этого между кристалликами , могут деформироваться, приходить друг с другом в контакт и слипаться. Так, в результате чисто механических воздействий, возникающих при замерзании коллоидной системы, может образовываться коагулят. - [c.311]

    Эти технологические процессы позволяют добиваться макроскопического структурирования однородной белковой пасты юсредством интенсивных механических воздействий. Пасту, которая может содержать не только растительные белки, но также овальбумин, белки молока или другие белки животного происхождения, сначала коагулируют. Эта коагуляция возможна посредством простой термообработки [78] или коагуляции альгината после добавления солей кальция [7]. В первом случае полу- чаемый коагулят интенсивно перемешивают с помощью лопастной мешалки, во втором случае сгусток измельчают вращающимся ножом. Полученный продукт можно затем обрабатывать путем промывки, варки или прожаривания и пропитывать различными, красящими и ароматизирующими добавками. [c.559]

    В рамках теории устойчивости коллоидов (ДЛФО) коагуляция может происходить с преодолением потенциального барьера отталкивания частиц, а может происходить и без его преодоления при наличии достаточно глубокой потенциальной ямы на дальних расстояниях между частицами. В первом случае возникает непосредственный (фазовый) контакт частиц. Частицы могут при этом спекаться за счет перекристаллизации дисперсной фазы в зоне контакта. Структуры с таким видом связи называются кристаллизационными. Процесс структурирования, как и коагуляция, имеет в этом случае необратимый характер. Дисперсные системы с кристаллизационной структурой обладают свойствами хрупкого твердого тела. Во втором случае (безбарьерной коагуляции) связь частиц значительно слабее и она вполне обратима, т. е. легко разрушается и снова восстанавливается, Соответственно этому и состояние системы способно обратимо изменяться. Разрушение связей между частицами, а следовательно, и разрушение структуры, может быть вызвано слабыми механическими воздействиями, например перемешиванием раствора, переливанием его в другой сосуд и т. д. В состоянии покоя разрушенные связи, а с ними и структурное состояние системы полностью восстанавливаются. Количество циклов разрушения и восстановления структуры ничем не ограничено. Способность структурированных систем к обратимым изотермическим разрушениям и восстановлениям структурного состояния называется тиксотропией. Внешним признаком разрушения структуры может быть заметное разжижение взвеси. Восстановление структуры при этом сопровождается ее загустеванием. Этот процесс может занимать достаточно большое время (минуты, часы), а может происходить и практически мгновенно. Частным проявлением тиксотропии служит зависимость вязкости взвеси от времени, если восстановление структуры происходит достаточно медленно. Мгновенное тик-сотропное восстановление структурного состояния и, соответственно, механических свойств дисперсных [c.677]

    Коагуляция осуществляется преимущественно раствором алюмо-калиевых квасцов или сернокислого алюминия [10]. Другие методы коагуляции (замораживание, механическое воздействие, электроосаждение), используемые в ираизводстве синтетических каучуков, в производстве полистирольных пластиков не применяются. Скоагулированный полимер промывают водой и отжимают в центрифугах или вакуум-фильтрах, а затем направляют на сушку. [c.192]

    Наряду с работами ио повышению электроустойчивости были проведены исследования агрегативной устойчивости латексов к воздействию низких температур. Надо отметить, что этот. вопрос изучен сравнительно мало. Большинство исследователей считает, что основной причиной коагуляции латексов при замораживании — оттаивании являются возникающие при образовании кристаллов льда механические воздействия, которые приводят к разрушению адсорбционного слоя эмульгатора. Из факторов, влияющих на устойчивость к замораживанию — оттаиванию и на сохранение адсорбционного слоя эмульгатора, следует отметить тип и количество эмульгатора, pH среды латекса, состав полимера или сополи1мера, Концентрацию латекса, размер частиц, различные добавки (спирты, соли и др.), которые содержатся в технических нро Дуктах, а иногда специально вводятся с целью ирида Ния латексам нужных свойств. [c.219]


Смотреть страницы где упоминается термин Коагуляция механических воздействий: [c.198]    [c.241]    [c.285]    [c.198]    [c.6]   
Курс коллоидной химии (1976) -- [ c.308 ]




ПОИСК





Смотрите так же термины и статьи:

Коагуляция



© 2025 chem21.info Реклама на сайте