Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силы взаимодействия между частицами

    Из приведенных данных следует, что эффективные коэффициенты диффузии изменяются с концентрацией, причем эта зависимость проходит обычно через минимум, положение которого зависит от природы электролита. Уравнения (6.12) и (6.36) передают эту зависимость более или менее верно в области весьма разбавленных растворов в более широкой области концентраций она не может быть сведена к изменению коэффициента активности с концентрацией. По-видимому, такой характер зависимости коэффициента диффузии от концентрации обусловлен тем, что из-за специфики диффузионного процесса силы взаимодействия между частицами проявляются в нем по-иному, чем в состоянии равновесия или при прохождении электрического тока. В отличие от равновесного раствора с его хаотическим движением всех частиц, при котором центральный ион и ионная атмосфера могут перемещаться как в одном и том же, так и в противоположных направлепиях, при диффузии наблюдается направленное перемещение нонов, накладывающееся на их тепловое движение. [c.145]


    Если для конкретного сыпучего материала при постоянных влажности и температуре получить эксперимента,тьно несколько пар значений п то можно построить графическую зависимость предельного сопротивления сдвигу от нормального напряжения в плоскости скольжения (рис. 5.3). Для сыпучих материалов, у которых аутогезионные силы взаимодействия между частицами практически отсутствуют (несвязные сыпучие материалы), изменение а не влияет на плотность упаковки частиц и прочность материала, поэтому все опытные точки ложатся на одну прямую. [c.152]

    В пластовых нефтях, где структура образуется асфальтеновы-ми частицами, роль поверхностно-активных веществ играют смолы [ 1 ]. Последние образуют вокруг асфальтеновых частиц адсорбционно-сольватные слои и тем самым ослабляют силы их взаимодействия. Добавление к таким нефтям ПАВ может привести к образованию более мощных адсорбционно-сольватных слоев. Вследствие этого силы взаимодействия между частицами асфальтенов ослабнут, прочность структуры в нефти уменьшится. Стабилизация асфальтеновых частиц молекулами ПАВ облегчит разрушение связей между ними при механическом воздействии. Это выразится в снижении аномалий вязкости нефти. [c.16]

    При бесконечно большом разбавлении силы взаимодействия между частицами растворенного вещества становятся исчезающе малыми, активность в этих условиях совпадает с концентрацией  [c.76]

    Таким образом, в псевдоожиженном слое с правильным уравнением течения сила сдвига и сила тяжести — величины одного порядка и превышают силу взаимодействия между частицами. Если сила трения между частицами значительно больше силы тяжести, то в таких системах правильная диаграмма сдвига не получается. [c.245]

    Наряду с понятием идеальный газ введем понятие идеальный раствор. Если раствор образован двумя неограниченно растворимыми друг в друге жидкостями, близкими по свойствам, то силы взаимодействия между частицами в растворе существенно не отличаются от таковых в чистых жидкостях. При этом образование раствора не сопровождается тепловым эффектом и объем его равен сумме объемов компонентов. [c.33]

    Записав граничные условия исходя из постулата о радиальном и симметричном потоке, авторы получили численные решения уравнений количества движения и неразрывности для принятых рд, < е, Qs и "т/, рассчитав распределение давлений, порозности, скоростей газа и твердых частиц на подходе к отверстию. Как для двух-, так и для трехмерного потока, как показывает анализ, следует ожидать быстрого падения порозности и крутого градиента давления в области О < г/г,, < 1. Однако, опыты с песком (100 мкм) и стеклянными сферами (500 мкм) в двухмерных слоях высотой 2,5 м, шириной 61 см, и толщиной 1,27 см обнаружили значительно меньшие изменения параметров, чем это следует из теоретических расчетов. По измеренным давлениям при истечении из горизонтальных щелей высотой 1 см и 2,5 см получены профили, очень сходные с найденными ранее для меньших отверстий (рис. ХУ-5, г) и согласующиеся с допущением о постоянной порозности. Измерения емкостным датчиком показали, что вблизи отверстия порозность слоя, действительно практически постоянна. Авторы объяснили эти расхождения возможной неадекватностью постулата о радиальном и симметричном потоке. Было выявлено существование застойных зон (в некоторой степени они сходны с показанным на рис. ХУ-5, в) и сделано предположение о возможном влиянии сил взаимодействия между частицами на режимы движения. [c.580]


    Силы взаимодействия между частицами вещества в жидком состоянии достаточно прочны, чтобы препятствовать беспорядочному перемещению частиц, но все же недостаточны для прекращения их перемещения относительно друг друга. [c.119]

    Растворы подчиняются закону Рауля, если силы взаимодействия между частицами разных вещеста (А — В) равны силам, действующим между частицами одного и того же вещества (А — А и В — В), причем смешение компонентов не сопровождается ни поглощением, ни выделением теплоты или изменением объема. Таким образом, Av = 0 AN = 0. [c.196]

    Кинетическая теория равновесия позволяет достаточно простым способом описать свойства разреженного газа, состоящего из жестких сферических молекул. Однако она становится все более сложной и трудной для приложения как в случае плотных систем, так и в случае систем, в которых имеются силы взаимодействия между частицами. Чтобы рассмотреть такие системы, мы кратко в общих чертах рассмотрим здесь очень эффективный статистический метод Гиббса [1—4]. [c.174]

    Учтем, что теплоемкость зависит не только от температуры, но и от объема системы. Это связано с тем, что между частицами системы, вообще говоря, существуют силы взаимодействия, которые изменяются при изменении расстояния между ними, что, в свою очередь, связано с изменением объема системы. Количество теплоты, которое необходимо сообщить системе для ее нагревания на 1 градус, т. е. теплоемкость, естественно, должно зависеть от сил взаимодействия между частицами, так как часть энергии расходуется на работу против этих сил. Таким образом, теплоемкость является функцией не только температуры, но и объема системы. Поэтому используем в формулах теплоемкости выражения частных производных [c.64]

    Силы Лондона — Ван-дер-Ваальса, возникающие между отдельными атомами, проявляются на очень малых расстояниях порядка атомных размеров. При взаимодействии коллоидных частиц вследствие аддитивности дисперсионных сил взаимодействие между частицами проявляется на значительно больших расстояниях. [c.416]

    При образовании раствора вследствие появления новых сил взаимодействия между частицами структура чистых жидкостей нарушается. Возникает новая структура с другим расположением частиц и иным взаимодействием между ними. Все это сильно влияет на процессы, протекающие в растворах. [c.179]

    Опытные данные для каждого насадка при различных давлениях истечения удовлетворительно коррелируются уравнением тина (XV,1), но значения СЬ, хотя и превышают 0,5, никогда не достигают ожидаемой величины, т. е. 1. Если базироваться на аналогии с капельными жидкостями, то увеличение расхода псевдоожиженного твердого материала при истечении из насадков по сравнению с отверстиями в плоской стенке объясняется отсутствием сужения струи на выходе. Мы видели, однако, что сужения струи не происходит и в обычном отверстии таким образом, эффект применения профилированного насадка сводится к уменьшению сил взаимодействия между частицами. [c.582]

    Исследования типа и величины сил взаимодействия между частицами дисперсной фазы и углеводородами молекул нефти и нефтяных фракций в заданном интервале температур является довольно сложной задачей. Несмотря на это, возможна количественная оценка слабых взаимодействий между молекулами или частицами дисперсной фазы в нефтяных фракциях. Одним из приемлемых параметров для оценки межмолекулярного взаимодействия в нефтяных дисперсных системах является плотность энергии когезии (ПЭК), характеризующая количество энергии, которое потребуется для удаления молекул жидкости на бесконечно большое расстояние друг от друга [93]. Плотность энергии когезии возможно определить экспериментально только для жидкостей, испаряющихся без разложения. Предложены эмпирические формулы, позволяющие рассчитывать плотность энергии когезии [94-97]  [c.99]

    Дисперсные системы имеют две фазы мелко раздробленную дисперсную фазу и дисперсионную среду. Состав системы определяет величину сил, действующих между частицами, так как он влияет на потенциал и толщину двойного слоя. Силы взаимодействия между частицами, а также их концентрация, определяют структуру дисперсной системы и, следовательно, ее реологические свойства. [c.80]

    Главным признаком термодинамически устойчивых растворов является их гомогенность. В отличие от того, когда смешивающиеся вещества образуют новое химическое соединение, соот-нощение компонентов в растворе не является строго определенным, а состав его может в известных пределах плавно изменяться. В то же время раствор не является простой механической смесью составляющих его веществ. Известно, что образование раствора из отдельных компонентов сопровождается выделением или поглощением теплоты и изменением объема. Это указывает на наличие сил взаимодействия между частицами раствора. Под воздействием этих сил происходят диссоциация и ассоциация частиц и образование химических соединений различной прочности и состава. Существование химических соединений в растворах предсказал Д. И. Менделеев. Экспериментально соединения переменного состава в растворах были обнаружены Н. С. Курнаковым. [c.179]


    Силы взаимодействия между частицами идеального раствора вследствие близкой природы компонентов остаются такими же, как в чистых жидкостях. [c.190]

    Опытные данные указывают на то, что увеличение отклонений от законов разбавленных растворов сопровождается повышением электрической проводимости растворов, а также способности к химическому взаимодействию. Перечисленные особенности растворов электролитов, обнаружение ионов путем спектрального анализа и другие экспериментальные факты привели к появлению во второй половине XIX в. теории электролитической диссоциации Аррениуса, в соответствии с которой при образовании раствора электролита происходит диссоциация растворенного вещества на ионы, тем более полная, чем больше разбавлен раствор электролита. Несмотря на упрощенность этой теории, совершенно не рассматривающей причин диссоциации, не учитывающей сил взаимодействия между частицами, образования сольватов и других явлений, она позволила объяснить целый ряд опытных фактов. [c.202]

    Принцип метода заключается в том, что частицы приводятся в соприкосновение с пластинкой и что силе тяжести противодействует сила взаимодействия между частицей и стенкой. [c.248]

    Силы взаимодействия между частицами жидкости значительно больще по сравнению с силами, действующими в газовых системах. В результате в жидкостях могут возникать упорядоченные участки, которые распадаются и снова образуются, поэтому энтропия жидкости ниже энтропии газа. В то же время малая прочность связей между частицами в жидкости обусловливает ее подвижность и текучесть. Сжимаемость жидкостей намного меньше, а плотность намного больше, чем у газов количественно эти свойства близки к свойствам кристаллических тел. Их зависимость от температуры значительно меньше, чем у газов, но несколько сильнее, чем у твердых тел. [c.72]

    Кристаллические решетки классифицируют по типу сил взаимодействия между частицами, формирующими решетку. [c.117]

    Можно найти известную аналогию в развитии теории растворов электролитов и теории газового агрегатного состояния. В том и другом случаях первоначально предполагалось, что система ведет себя подобно идеальной и что между образующимися частицами нет сил взаимодействия. Приложение полученных на основе таких представлений законов к реальным системам приводило к значительным расхождениям между теорией и опытом. В связи с этим для газов вместо простого уравнгния газового состояния рУ = ЯТ предлагались другие, более сложные, в которых так или иначе учитывались силы взаимодействия между частицами. Одним из них было уравнение Ван-дер-Ваальса [c.73]

    При наличии в промышленных сыпучих материалах аутогезион-ных сил взаимодействия между частицами связь между предельным сопротивлением и нормальиымц напряжениями в плоскости скольжения слоев один относительно другого выражается законом Кулона [c.152]

    Еще во времена Бенджамина Франклина и Джона Дальтона высказывалось предположение, что силы взаимодействия между частицами материи должны иметь главным образом электрическое происхождение. Однако поскольку одноименные заряды отталкиваются друг от друга, существовало неправильное мнение, что между одинаковыми атомами не могут возникать связи тем не менее в настоящее время все хорошо знают, что большинство распространенных газов состоит из двухатомных молекул Н2, N2, О2, р2, С12 и т.д. Эта грубая ошибка привела к почти полувековой путанице с молекулярной структурой и атомными массами так, полагали, что газообразный водород описывается формулой Н, а не Н2, воду описывали формулой НО вместо Н2О, а кислороду приписывали атомную массу 8 вместо 16. Лишь в 1913 г. Льюис ввел представление о том, что электронные пары являются тем клеем , который соединяет между собой атомы с образованием ковалентных связей, однако теоретическое объяснение роли электронных пар было дано спустя еще 20 лет. Опыты Фарадея показали, что заряды на ионах всегда кратны некоторым элементарным единицам заряда, причем моль этих зарядов составляет 1 Р, а Стоней назвал эту элементарную единицу заряда электроном. Однако Стоней отнюдь не отождествлял электрон с какой-либо частицей, которую можно было попытаться изолировать и исследовать. [c.47]

    Наличие сил взаимодействия приводит к необходимости более четко определить такие понятия, как соударение и область взаимодействия реагирующих частиц. Хотя эти термины и относятся к числу понятных всем, однако они не столь очевидны, как это кажется. Так, для жидкости понятие соударение вообще не идентифицировано. Следуя [1], будем называть областью взаимодействия область, ограниченную условием < г < г .х-Ограничение снизу с очевидно — это радиус жесткой оболочки частицы в модели жестких сфер, верхняя н е граница Гд х задается из условия, что силы взаимодействия между частицами больше сил, формирующих внутреннюю структуру каждой из частиц. Теперь соударение можно определить как такое состояние сблизивпшхся частиц, при котором любое изменение их внутренней структуры — химической или энергетической — обусловлено силами взаимодействия, возникающими между частицами. В результате соударения появляется искривление траектории движения и изменение импульса (если соударение неупруго). Соударение — процесс, протекающий во времени, его началом условно можно считать момент начала искривления траектории, а концом — завершение поворота на угол 0, после чего частица, продолжая инерциальное движение, более не меняет угла своей траектории. Промежуток времени между этими моментами есть время соударения. В течение этого времени [c.50]

    Для псевдоожиженного слоя характерно сложное взаи.чодействие различных сил трения между соседними частицами, движущимися с различными скоростями, статических адгезионных сил взаимодействия между частицами, гравитационных, а также силы лобового сопротивления потоку ожижающего агента. Влияние гравитационных сил и силы лобового сопротивления, действующих на твердые частицы, изучено достаточно хорошо. Роль сил трения, статических адгезионных сил взаимодействия между частицами (т, е. реология) в псевдоожиженном слое изучена слабо число публикаций, посвященных реологическим свойствам псевдоожиженных систе.п, весьма невелико. [c.228]

    Е осредпеиный вектор, имеющий смысл силы взаимодействия между частицами обеих фаз [c.87]

    Адгезия частиц — взаимодействие частиц и твердой поверхности стеиок аппарата, рабочих органов аппарата и т. п. когезия—это связь между молекулами, приводящая к образованию единого твердого тела (возникает в месте контакта взаимодействующих тел) агломерация - процесс укрупнения частиц в результате спекания агрегация — самопроизвольное укрупнение частиц слеживаемость — возникновение сил взаимодействия между частицами в результате появления кристаллизационных мостиков между частицами или капиллярных сил. [c.151]

    Если силы взаимодействия между частицами не являются центральносимметричными, как например, во внешнем электрическом поле, диффузионное уравнение уже не удается решить аналитически. Однако если пренебречь угловыми составляющими диффузионного потока, то из уравнения (5.35) в сферической системе координат можно найти плотность потока на единицу поверхности частицы Интегрируя найденную величину, по полярному углу, от которого зависит величина радиальной составляющей силы, получим следующее выражение для полного потока частиц на частицу 7  [c.94]

    Конвективная составляющая, связанная с движением частиц. Частицы в объеме слоя обмениваются теплотой с ожижающим газом и путем теплопроводности через газ — друг с другом. Обычно они остаются внутри объема слоя достаточно долгое время, чтобы достигнуть той же самой температуры, что и их соседи. Затем некоторые частицы, имеющие температуру слоя, выносятся вследствие во.з-действия на них созданного инутри слоя циркуляционного движения пузырей, в непосредственную близость к поверхности теплообмена. Теплота передается от частиц к поверхности посредством теплопроводности через газ, что является ограничивающим этапом в данном механизме. Когда первые поступившие частицы приближаются близко к поверхности теплообмена, возникает высокий локальный градиент температур и вследствие этого происходит быстрая передача теплоты. Чем дольше частицы находятся вблизи теплопередающей поверхности, тем ближе становятся температуры поверхности и локальная температура слоя. Таким образом, самые высокие средние коэф( )ициенты теплоотдачи будут получены при условии, что происходит быстрый обмен вещества между окрестностями поверхности теплообмена и объемом слоя, т. е. при низких временах соприкосновения частиц с теплопередающей поверхностью. При высокодиснерс-ном порошкообразном материале частиц ( <,20 мкм) циркуляция внутри слоя затормаживается вследствие возникновения сил взаимодействия между частицами. Сильная обратная зависимость коэффициента от [c.447]

    В мадоконцентрированных системах, где расстояние между частицами значительно превышает значимое для силовых поляризационных эффектов, возможно использование совокупности линейных и квадратических эффектов по полю. Это означает, что принципиально возможно разделение системы с наличием одной—двух частиц в безграничном объеме, что чрезвычайно важно для соответствующих технологических процессов. Как в неполярных, так и полярных дисперсионных средах поляризационные силы взаимодействия между частицами описьшаются сходными формулами в том смысле, что они содержат величину /г , что является прямым подтверждением дипольного характера сил. Это же означает, что электрические параметры режима злектрообработки, а не электрохимические, наиболее важны для реализации процессов. Используя значения напряженности поля, обеспечивающие минимум потенциальной энергии на кривой взаимодействия частиц, возможно [c.16]

    Натансон [594]j рассматривал также наличие кулоновских и поляризационных сил взаимодействия между частицами и цилиндром и вывел уравнения для эффективности захвата, подобные уравнениям Кремера и Джонстона. Они были рассмотрены в обзоре Пяча [643] я здесь приводиться не будут. [c.325]

    Тип и свойства структур, образующихся в коллоидных системах, зависят от характера сил взаимодействия между частицами. Согласно теории етруктурообразования все структуры в коллоидных системах разделяются на два типа коагуляционные и конденсационно-кристал-лизационные. В основу этой классификации положена потенциальная кривая взаимодействия частиц, вытекающая из теории ДЛФО (см. рис. 46). [c.187]

    При взаимодействии макроскопических тел в конденсированной среде аддитивное приближение оказывается менее удовлетворительным, чем при взаимодействии в вакууме. Флуктуация заряда в объеме одного из тел индуцирует дипольные моменты не только у молекул другого тела, но и у молекул находящейся в зазоре жидкости. В свою очередь,индуцированные диполи второго тела взаимодействуют не только с первичными диполями первого тела, но и с индуцированными диполями жидкой среды, находящейся между ними [186]. В результате возникает необходимость учета влияния среды на межчастичное взаимодействие в дисперсных системах, в частности, на распространение ловдоновского поля между элементами макроскопических тел и учет конечности величины притяжения частиц средой [187]. Наличие жидкой среды уменьшает силы взаимодействия между частицами, которые в этом случае даже при сравнительно больших R не всегда являются только дисперсионными[188]. Так, резонансная энергия должна вносить существенный вклад в суммарную энергию межчастичного взаимодействия в жидкой среде, особенно если она представлена аромати- [c.99]

    Структурирование объясняется вандерваальсовыми или электростатическими силами взаимодействия между частицами дисперсной фазы. В концентрированных системах расстояние между частицами дисперсной фазы небольшое, поэтому и структурирование в них более эффективно. Если структурирование [c.293]

    Джоуль и Томсон показали, что огромное большинство изученных ими газов при сво бодном расширении охлаждается, поскольку такое расширение связано с работой против внутренних сил взаимодействия между частицами газа. Изменение температуры согласно открытому эффекту определяется коэффициентом Джоуля — Томсона ц, который численно равен изменению температуры, измеренному при постоянной энтальпии в системе, если разность давлений равна 1013-10 Па  [c.35]

    На первый взгляд рассуждения о включении и выключении сил взаимодействия между частицами растворенного вещества могут показаться схоластическими. Однако именно подобные рассуждения позволили те ретически обосновать зависимость коэффициентов активности ионов от их концентрации в растворах электролитов. [c.204]


Смотреть страницы где упоминается термин Силы взаимодействия между частицами: [c.165]    [c.151]    [c.155]    [c.26]    [c.181]    [c.58]    [c.218]    [c.204]   
Псевдоожижение твёрдых частиц (1965) -- [ c.85 , c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Сила взаимодействия между

Силы взаимодействия частиц

Частицы взаимодействие



© 2025 chem21.info Реклама на сайте