Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мутанты третичные

Рис. 84. Схематическое изображение хромосом, характеризующих третичные мутанты Рис. 84. <a href="/info/376711">Схематическое изображение</a> хромосом, характеризующих третичные мутанты

    Гемоглобины и миоглобины образуют группу белков, которые лучше всего подходят для исследования влияния белков на константу равновесия в процессе связьшания одного лиганда, а именно кислорода. Все эти белки содержат один и тот же железопор-фириновый комплекс и, за исключением некоторых весьма редких мутантов, один и тот же аксиальный лиганд. Кроме того, все белки, о которых идет речь, обладают весьма сходной третичной структурой. Тем не менее величина константы равновесия связьшания кислорода, а также гомотропное и гетеротропное взаимодействия для них изменяются в широких пределах. Начиная с новаторской работы Кендрью и Перутца с сотрудниками по миоглобину кашалота и гемоглобинам человека и лошади, наиболее детальные сведения о структуре ряда гемоглобйнов и миоглобинов получены методом рентгеноструктурного анализа. Благодаря тому интересу, который представляют для медицины мутантные белки, за последние годы многие мутантные формы гемоглобина были выделены и изучены, так что можно исследовать влияние замены даже одной аминокислоты на структуру белка и его сродство к кислороду. [c.141]

    Тератологические мутанты. У подобных мутантов отмечены следующие изменения вегетативных органов и колоса появление на верхнем междоузлии одного или нескольких побегов, несущих стерильные, полустерильпые н фертильные колосья (вторичные побеги), появление новых побегов с колосом на вторичных побегах (третичные побеги), образование в колосе побегов с четырьмя и пятью междоузлиями и развитым колосом, превращение колоска в целый побег или колос, сильное (до 2—3 см) удлинение ннжппх члеников колосового стержня, разрастание колосовых и цветочных чешуй. Среди уродливых форм есть карликовые растения 20—25 см высотой со стерильными, полустерильными п фертильными колосьями. На одно растение в зависимости от фертильности колосьев приходится от 2 до 85 зерновок нормальной величины. Вес 1000 зерен равняется 46,0 г. Позднеспелые тератологические формы вызревают на 10—12 дней позже исходной формы. [c.193]

    Затем был найден противоположный случай мутант P и его ревертант оказались разделенными на генетической карте расстоянием порядка половины протяженности всего цистрона. Соот-ветстпелно были найдены в картине отпечатков пальцев 2 различных полипентидных фрагмента, измененных по сравнению с белками дикого типа. В рассматриваемом случае расстояние между измененными звеньями полипептидной цепи близко к по-.ловине ее длины. Интересной представляется возможность исправить повреждение в белке, затрагиваюш ее его ферментативную активность, с помогцью второго изменения в достаточно удаленном звене цепи. На первый взгляд, подобный факт противоречит положению об активном центре фермента. Однако такое заключение является поверхностным. Активный центр фермента содержит функциональные группы, достаточно удаленные друг от друга по полипептидной цени, но сближаемые вследствие складывания цепи во вторичной и третичной структуре. Именно благодаря этому обстоятельству повреждение цепи, отражаюш,ееся на третичной структуре (например, введение заряженной боковой группы), может разрушить активный центр фермента, а новое изменение, восстанавливающее первоначальную третичную структуру, может произойти совсем в другом звене цепи. Возможность бесконечно варьи- [c.419]


    Сравнение кинетики сворачивания родственных блоков, полученных методом генной инженерии и отличающихся между собой аминокислотным составом боковых цепей, позволяет подойти к определению структуры промежуточных состояний при сворачивании. Незначительные изменения в боковых цепях белка мутантов не нарушают общей картины сворачивания, но выявляют роль определенных взаимодействий в этом процессе. Анализ более 120 мутантов, включающих изменение более половины боковых цепей барназы (РНК-аза белок со 110-ю остатками), подтвердил определяюшую роль гидрофобных взаимодействий в стабилизации зародышей вторичной и третичной структуры (Фершт, 1993). По-видимому сворачивание в барназе начинается на N-кoнцe, образующем а-спирали, и центральной -шпильке, которые затем притягиваются и стабилизируются гидрофобным взаимодействием. При сохранении общего направления сворачивания основной последовательности возможны небольшие различия в структуре интермедиатов, отражающие роль боковых цепей. В целом становится ясным, что в белках вторичная структура служит блоком при формировании третичной структуры и должна поэтому быстро образовываться и быть относительно стабильной, чтобы прожить достаточно долго. Начало формирования третичной структуры связано с образованием инициирующей шпильки из соседних по цепи сегментов. Это требует фиксации структуры двух структурных сегментов и большой затраты энергии и поэтому невыгодно с энергетической точки зрения. [c.214]

    Блексли установил, что каждый первичный мутант дурмана способен дать два вторичных мутанта, т. е. всего их может быть 24 (рис. 82). Третичные мутанты по той же формуле (2я+1) способны возникать лишь в тех случаях, когда лишняя хромосома образована сегментами, принадлежащими не гомологичным хромосомам, а хромосомам из разных пар. На рисунке 83 представлен набор хромосом дурмана с обозначением их половинок числамЕ от 1 до 24. При этом третичный мутант может иметь лишнюю хромосому, возникающую путем транслокации между хромосомами 1, 2) и (17, 18), что приводит к новым комбинациям 1, 18) и 2, 17). Соответственно этому растения будут иметь набор хромосом, определяемый формулами [2я+(/, 18)] и [2п+ 2, 17)1 что в действительности наблюдалось и было описано. [c.140]


Смотреть страницы где упоминается термин Мутанты третичные: [c.49]    [c.200]    [c.31]    [c.78]    [c.200]   
Цитология растений Изд.4 (1987) -- [ c.140 , c.142 ]




ПОИСК







© 2025 chem21.info Реклама на сайте