Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Третичная структура и гидрофобные связи

    Приемы текстурирования имеют целью придать волокнистую структуру глобулярным или волокнистым белкам, не имеющим желаемой естественной структуры. Пищевая промышленность располагает ограниченными средствами модификации белковых молекул, поскольку использование химических процессов очень ограничено по причинам правовой регламентации. Однако можно воздействовать на нековалентные связи, предопределяющие вторичные и третичные структуры (водородные связи, электростатические и гидрофобные взаимодействия), а в некоторых случаях — на специфическую ковалентную связь (дисульфидный мостик) с целью изменения структуры белков для изготовления текстурированных продуктов питания. [c.532]


    Третичная структура — конформация полипептидной цепи в целом (т.е. расположение в трехмерном пространстве). Третичную структуру стабилизируют связи и взаимодействия между радикалами, аминокислотных остатков полипептидной цепи ковалентная — ди-сульфидная связь, а также водородная, ионная связи и гидрофобное взаимодействие. Виды белков, имеющих третичную структуру  [c.36]

    Белки в природе представлены очень большим разнообразием структур в зависимости от организации молекулярных цепей на четырех уровнях. Линейная последовательность аминокислот, составляющая полипептидную цепь, образует первичную структуру. Аминокислотный состав, число и последовательность аминокислот, а также молекулярная масса цепи характеризуют эту первичную структуру и обусловливают не только другие степени организации, но физико-химические свойства белка. Образование водородных связей между кислородом карбонильной группы и водородом МН-группы в различных пептидных связях предопределяет вторичную структуру. Установление этих внутри- или межмолекулярных водородных связей приводит к возникновению трех типов вторичной структуры а-спираль, Р-структура в виде складчатого листка или тройная спираль типа коллагена. В зависимости от характера белков в основном образуются вторичные структуры одного или другого вида. Однако некоторые белки могут переходить из одной структуры в другую в зависимости от условий, в которых они оказываются, либо образовывать смесь частей в виде упорядоченных а- и Р-структур и неорганизованных частей, называемых статистическими клубками. Между боковыми цепями аминокислот, составляющими полипептидную цепь, устанавливаются взаимодействия ковалентного характера (дисульфидные связи) или нековалентные (водородные связи, электростатические или гидрофобные взаимодействия). Они придают белковым молекулам трехмерную организацию, называемую третичной структурой. Наконец, высшая степень организации может быть достигнута нековалентным связыванием нескольких полипептидных цепей, что приводит к образованию структуры, называемой четвертичной. Многие белки имеют пространственную конфигурацию сферического типа и называются глобулярными. В противоположность этому некоторые белки обладают продольно-ориентированной структурой и называются фибриллярными. Натуральные волокнистые [c.531]


    Не более оригинальна и каркасная модель сборки белка, базирующаяся на постулате, непосредственно следующем из концепции Полинга-Кори о якобы энергетической предпочтительности регулярных вторичных структур, которые в связи с этим должны играть центральную роль в определении пути структурирования белковой цепи. Предполагается, что процесс сборки начинается с появления изолированных и на первых порах изменчивых вторичных структур ("мерцающих кластеров"). Взаимодействуя друг с другом, они вытесняют молекулы воды, стабилизируют свои структуры и посредством гидрофобных взаимодействий образуют единый, достаточно жесткий каркас третичной структуры [23, 24]. Близкое и столь же умозрительное представление о свертывании белковой цепи заложено в так называемой диффузионно-коллизионной модели [25, 26]. Аналогичные по существу механизмы сборки белка рассматривались также в работах [27, 28]. [c.86]

    Третичная структура белка для глобулярных белков представлена сложной структурой, сходной с клубком или глобулой. Структура в этой глобуле поддерживается водородными, ионными, гидрофобными связями. Иногда одна часть структуры представлена спиралью, другая -складчатым листом, чередующимся с линейной последовательностью АК. Фрагменты такой структуры, имеющие определенное строение, называют доменами (например, спиральный домен). Третичная структура фибриллярных белков - более сложная спираль (двойная или тройная), иногда ее, например в молекуле коллагена, называют суперспиралью. [c.25]

    Вместе с тем в этих исследованиях выявляются важные особенности спиральных участков белковой цепи в глобуле. Анализ участков А, В, Е, G и Н а-спиралей свидетельствует о периодическом расположении в них неполярных аминокислотных остатков [111]. Спиральные последовательности ориентированы в глобуле таким образом, что эти остатки оказываются расположенными именно в ядре глобулы. Спирализация полипептидной цепи термодинамически выгодна для целого ряда аминокислотных остатков, так как она обеспечивает насыщение водородных связей. Но а-спирализация (равно как и образование Р-форм) определяется, вместе с тем, и гидрофобными взаимодействиями. Иными словами, вторичная структура стабилизуется пространственной структурой (третичной структурой) белка. [c.233]

    У ряда белковых соединений несколько сложных полипептидных цепей белка могут агрегироваться вместе, создавая более сложный комплекс определённого строения, называемый четвертичной структурой белка. Каждая полипептидная цепь, образующая четвертичную структуру, называется субъединицей и сохраняет свойственные ей первичную, вторичную и третичную структуры, однако биологическая роль комплекса в целом отличается от биологической роли субъединиц вне комплекса. Фиксация четвертичной структуры обеспечивается водородными связями и гидрофобными взаимодействиями между субъединицами. Например, молекула гемоглобина - белка с четвертичной структурой - состоит из четырёх субъединиц, окружающих гем (простетическую железосодержащую группу - железопорфирин) между субъединицами нет ковалентной СВЯЗИ, однако тетрамер представляет собой единое целое, в котором субъединицы тесно связаны и ведут себя в растворе как одна молекула. Наличие четвертичной структуры характерно также для других металлопротеинов и для иммуноглобулинов. При формировании четвертичной структуры белка образующийся комплекс может содержать, помимо субъединиц полипептидной структуры, и субъединицы иной полимерной природы, а также соединения других классов. [c.71]

    В формировании третичной структуры важную роль играют нее (электростатическое) и гидрофобное взаимодействия, также дисульфидные связи. [c.369]

    Липазы гидролизуют эфирные связи в триглицеридах. Для этих ферментов свойственна стереоспецифичность, т е. способность гидролизовать сложноэфирную связь или в положении 1, или в положении 3. На скорость липолиза оказывают влияние соли натрия, кальция, желчных кислот. Третичная структура липазы предусматривает наличие гидрофобного сайта, при помощи которого она соединяется с липидами, и гидрофильного хвоста, локализованного в водной фазе. Активный центр фермента находится вблизи гидрофобной головки. [c.80]

    При изучении эффекта Керра [119], а также при исследовании спектров флуоресценции 7-глобулина [1201 показано, что 90% ароматических остатков спрятаны внутри глобулы и находятся в гидрофобном окружении. При подробном изучении дифференциальных УФ-спектров 7-глобулина Окуловым и Троицким [1211 обнаружено, что примерно 17 остатков тирозина (из 56) и 3 остатка триптофана (из 22) расположены на поверхности нативной глобулы 7—8 тирозинов расположены в щелях глобулы и больше половины тирозинов (31—32) и подавляющая часть триптофанов находятся внутри глобулы. Авторами было замечено, что при pH 3 молекула 7-глобулина может набухать , что приводит к повышению доступности хромофоров без разрушения упорядоченных структур молекулы. Это, вероятно, связано с частичным разрушением глобулярной (третичной) структуры без нарушения вторичной. Если при этом частично или полностью разрушаются гидрофобные области, то естественно, что связывание углеводорода должно уменьшаться. Вероятно, такое поведение (существование частично развернутой формы белка) при изменении pH присуще всем глобулярным белкам. Однако для обнаружения этих форм недостаточно изучения только вязкости и оптической активности. Очень важную информацию может дать исследование связывания углеводородов. Дальнейшее увеличение заряда с изменением pH среды приводит белковую молекулу к состоянию, соответствующему полной дезорганизации глобулы, разрушению ее третичной и вторичной структуры, т. е, к состоянию клубка. [c.26]


    Введение бензола в водные растворы желатины приводит к изменению третичной структуры белка, а именно бензол, взаимодействуя с гидрофобными областями желатины, делает молекулу более компактной (рис. 24), менее асимметричной и тем самым уменьшает число возможных межмолекулярных водородных и гидрофобных связей [213, 214]. Взаимодействие бензола с макромолекулами желатины уменьшает прочность геля, тогда как прочность эмульсий, приготовленных на этих же растворах желатины, увеличивается за счет прочных межфазных адсорбционных слоев желатины. Дальнейшее увеличение количества эмульгированного бензола снова понижает прочность всей системы, по-видимому, добавленный бензол действует как смазка, распределяясь по внешним оболочкам межфазных слоев. [c.98]

    Белки под влиянием нагревания или воздействия органических растворителей, концентрированных кислот или щелочей претерпевают глубокие изменения, называемые денатурацией. При денатурации существенно изменяется третичная структура молекулы белка за счет перегруппировки некоторых внутримолекулярных связей (водородных, дисульфид-ных и др.). В результате нарушаются некоторые физические, химические и биологические свойства белковых молекул. Теряется способность белка растворяться в обычных для него растворителях (вода, солевые растворы и др.). Иначе говоря, белки при денатурации теряют свои гидрофильные свойства и приобретают гидрофобные. Такой вид денатурации называется необратимой денатурацией в отличие от обратимой, при которой изменения в молекуле белка бывают неглубокими и белок при определенных условиях может вновь приобретать свой нативные (т. е. натуральные) свойства. [c.26]

    Полипептидные цепи белков могут соединяться между собой с образованием амидных, дисульфидных, гидрофобных, водородных и иных связей за счет боковых цепей аминокислот. В результате возникновения этих связей происходит закручивание а-спирали в клубок (рис. 38). Эти особенности строения белков называют третичной структурой. [c.320]

    Солеобразные связи обычно образуются в среде с малой диэлектрической проницаемостью, например в органических растворителях или внутри гидрофобного ядра молекулы глобулярного белка. Образование их в водной среде менее вероятно. Поскольку образование солеобразных связей увеличивает и без того большую диэлектрическую проницаемость водных растворов, мочевина должна ослаблять такие связи. Между некоторыми типами водородных связей и некоторыми солеобразными связями нет резкой границы. Примерами образования солеобразных связей могут служить связи молекул белка с ионами щелочных металлов. По-видимому, солеобразные связи не влияют заметно на вторичную и третичную структуру, поскольку добавление солей, уменьшающих электростатическое взаимодействие, не очень эффективно в отношении денатурации. Однако частичное разрушение четвертичной структуры гемоглобина при высоких концентрациях соли свидетельствует о том, что эти связи все же влияют на стабильность молекулы. [c.275]

    Третичная структура белков предопределяет особенности взаимного расположения полипептидных цепей в фибриллах и (или) глобулярных структурах. Для каждого вида белка характерна определенная третичная структура. Третичная структура белков стабилизируется различными видами межмолекулярных контактов водородных, диполь-дипольных, солевых, дисульфидных, амидных, сложноэфирных связей. Существенное значение в формировании и фиксации третичных структур ифают гидрофобные взаимодействия в водно-белковых системах. [c.347]

    В обоих белках (гемоглобине и миоглобине) гем прочно связан с белковой частью (глобином) с помощью 80 гидрофобных взаимодействий и одной координационной связью между имидазольным кольцом так называемого проксимального гистидина и атомом железа. Несмотря на многочисленные различия в их аминокислотных последовательностях, миоглобин и гемоглобино-вые субъединицы имеют сходную третичную структуру, включающую восемь спиральных участков. Гем вклинивается в щель между двумя спиральными участками кислород связывается по одну сторону порфирина, в то время как гистидиновый остаток координируется по другую. По-видимому, уникальное свойство гемоглобина связывать кислород зависит от структурных особенностей всей молекулы гемоглобина или миоглобина. [c.360]

    Третичная структура белков, обусловленная взаимодействием боковых цепей аминокислот, не приводит к такой высокой упорядоченности структуры, как в предыдущем случае. Помимо водородных связей важным фактором стабилизации третичной структуры является образование дисульфидных связей. Молекула инсулина имеет три таких дисульфидных мостика, два из которых соединяют две отдельные полипептидные цепи в молекулу. Третичная структура часто придает белковой молекуле такую конформацию, при которой гидрофильные группы (ОН, ЫНз, СО2Н) расположены на поверхности молекулы, а гидрофобные группы (алкильные и арильные боковые цепи)[ направлены внутрь, к центру молекулы. [c.302]

    ЧЕТВЕРТИЧНАЯ СТРУКТУРА белка, размещение в пространстве субъединиц, образованных из отд. полипептидных цепей совокупность контактов между субъединицам (без учета их геометрии), включающих гидрофобные контакты, водородные связи (нередко образующие систему, близкую к Р-структуре) и электростатич. взаимодействия. Прочность этих контактов различна иногда для их диссоциации достаточно изменения pH среды или ионной силы р-ра, одпако часто требуется полное разрушение третичной структуры субъединиц. Ч. с. характерна не для всех белков. В ее образовании чаще всего участвуют 2 или 4 субъединитц) , иногда — до 12 (понятие <Ч. с. пе распространяемся на надмолекулярные образования — мультиферментннле комплексы и протяженные структуры, напр, оболочки (liaron). [c.688]

    В большинстве регуляторных систем растений и животных катализ осуществляется глобулярными белками, которые носят название ферментов. Высокая химическая специфичность ферментов связана отчасти с уникальной макроструктурой этих полимеров. Сложность общей структуры белков можно оценить на примере фермента рибоиуклеазы (рис. 25-12). В то время как вторичная структура белков определяется только водородными связями, многочисленные изгибы полипептидной цепи, придающие глобулярным белкам третичную структуру, зависят не только от пептидных связей и водородных связей между амидными группами, но и от других типов связей, а именно а) дисульфидных связей в цистине б) ионных связей, в которых участвуют дополнительные аминогруппы или карбоксильные группы в) водородных связей и г) гидрофобных взаимодействий (рис. 25-13). [c.410]

    Под третичной структурой Ь понимают расположение его полипептидной цепи в пространстве. Существ, влияние на формирование третичной структуры оказывают размер, форма и полярность аминокислотных остатков. В молекулах глобулярных Б. большая часть гидрофобных остатков скрыта внутри глобулы, а полярные группировки располагаются на ее пов-сти в гидратированном состоянии. Однако ситуация не всегда настолько проста. Связывание белка с др. молекулами, иапр. фермента с его субстратом или коферментом, почти всегда осуществляется с помощью небольшого гидрофобного участка на пов-сти глобулы. Область контакта мембранных Ь с липидами формируется преим. гидрофобными остатками. Третичная структура многих Ь составляется из иеск. компактных глобул, наз. доменами (рис. 3). Между собой домены обычно бывают связаны тонкими перемычками -вытянутыми полипеп-тидньи и цепями. Пептидные связи, расположенные в этих цепях, расщепляются в первую очередь при обработке Б. [c.249]

    Термин четвертичная структура относится к макромолекулам, в состав к-рьк входит неск. полипептидных цепей (субъединиц), не связанных между собой ковалентно. Такая структура отражает способ объединения и расположения этих субъединиц в пространстве. Между собой отдельные субъединицы соединяются водородными, ионными, гидрофобными и др. связями. Изменение pH н ионной силы р-ра, повышение т-ры или обработка детергентами обычно приводят к диссоциации макромолекулы на субъединицы. Этот процесс обратим при устранении факторов, вызывающих диссоциацию, может происходить самопроизвольная реконструкция исходной четвертичной структуры. Явление носит общий характер по принципу самосборки функционируют многие биол. структуры. Способность к самосборке свойственна и отдельным фрагментам Б.-до-меиам. Более глубокие изменения конформации Б. с нарушением третичной структуры наз. денатурацией. [c.250]

    В биосистеме молекула Н2П находится преимущественно в неполярном окружении (коллоидный раствор). Модельные исследования [98, 100] показали, что в растворах ПАВ порфирины являются центрами образования неполярной части мицеллы. Взаимодействие первой и второй экранирующих сфер белкового комплекса осуществляется за счет гидрофобного взаимодействия периферических заместителей с неполярным белковым окружением (псевдо-сольватная оболочка [10]) и обеспечивается пространственной "подстройкой" сольватационных центров. В этом состоит роль Н2П в поддержании третичной структуры белка в белковых комплексах. Можно полагать, что происходящие при этом сильные конформационные изменения связаны в первую очередь с перестройкой периферии молекулы биопорфирина, а не с искажением самого макроцикла [101]. Существует иная точка зрения, касающаяся наличия у металлокомплексов порфиринов некоторой конформационной гибкости. Согласно ей, именно изменение степени искажения макроцикла в комплексе, а значит, и его физикохимических свойств, вызываемое конформационной перестройкой третичной структуры белка, является залогом их биологической активности in vivo [102-104]. [c.357]

    Стадия взаимодействия вторичных структур должна следовать за стадией их образования. Следовательно, до выработки геометрических критериев упаковки вторичных структур в супервторичные необходима идентификация а-спиралей и р-складчатых листов, описание процессов их идентификации, развития и терминации. Задачи, перечисленные в работе [140], предполагаются решенными, что, как известно, не соответствует действительности. Поэтому модель Птицына описывает не весь процесс белкового свертывания, а лишь упаковку вторичных структур, т.е. завершающую стадию, быть может, не отвечающую соответствующей стадии реального механизма самоорганизации. Следует также отметить несовместимость предложенной модели с одним из постулируемых в этой же работе положений. Так, автор, рассматривая вопрос об идентификации а-спиралей и Р-структур, исходит из существования корреляций между вторичными структурами и аминокислотной последовательностью, а обсуждая образование из них супервторичных структур, утверждает отсутствие таких корреляций. В основу поиска геометрических критериев упаковки вторичных структур положена простейшая полипептидная цепь - гомополимер из аминокислот с гидрофобными боковыми группами. Предполагается, что такая цепь в водном окружении обладает вторичными структурами, стабилизированными пептидными водородными связями, и супервторичной и третичной структурой, стабилизированной гидрофобными взаимодействиями боковых цепей а-спиралей или Р-складчатых листов. Реальное поведение гомополипептидов в растворе не дает, однако, оснований для подобных предположений [25, 142-144]. Молекулы гомополипептидов, как и молекулы других синтетических полимеров, имеют огромное количество близких по энергии непрерывно флуктуирующих в [c.504]

    Третичная структура глобулярных белков имеет вид компактных клубочков, напоминающих по форме эллипсоид вращения (лат. globulus шарик). В глобулярных белках преобладают внутримолекулярные водородные связи шсло межмолекулярных связей невелико- Все или почти все полярные группы глобулярных белков расположены на поверхности молекул, гидрофобные остатки находятся внутри свёрнутой цепи. Сольватация молекул водой энергетически вьп одна из-за доступности полярных групп и немногочисленности межмолекулярных водородных связей, что и обеспечивает высокую растворимость глобулярных белков. В организме глобулярные белки выполняют роль регуляторов и стабилизаторов процесса жизнедеятельности к ним относятся ферменты, гормоны, глобулины, альбумины, тканевые белки и т.д. [c.71]

    Вторичная структура закрепляется, как правило, с помощью дородных связей между пептидными группами, довольно близко сположенными в цепи а-аминокислотных остатков. Ее основ-16 виды — а-спираль и р-структура. Третичная структура ста-лизируется не только водородными связями, но и другими дами взаимодействий, например ионным, гидрофобным, а также сульфидными связями. [c.361]

    Денатурирующие агенты делятся на химические и физические. К последним относится прежде всего температурное воздействие, в частности замораживание или нагревание, а также давление, ультразвуковое воздействие, облучение и др. Химические агенты — это органические растворители (ацетон, хлороформ, спирт), концентрированные кислоты, щелочи, ионы тяжелых металлов. В лабораторной практике в качестве денатурирующих агентов чаще всего используют мочевину или гуанидинхлорид, легко разрывающие водородные и гидрофобные связи, при помощи которых формируется третичная структура белка. Максимальное денатурирующее действие оба реагента прояв- [c.53]

    Рассмотрим сначала наиболее простой случай развития межфазной прочности водных растворов глобулярных белков на границе с воздухом. Известно, что в водных растворах молекулы яичного альбумина, сывороточного альбумина и казеина находятся в виде глобул и большинство неполярных групп создают гидрофобные области внутри глобулы. При адсорбции белка на поверхности в результате избытка свободной энергии на границе раздела фаз происходят конформационные изменения адсорбированных молекул, так как нарушается равновесие сил, стабилизи-руюш их глобулу. Ранее на возможность развертывания глобул белков на границе раздела фаз указывалось в работах Александера [42, 43, 126], Пче.чипа [151], Деборина [152]. Развертывание макромолекул на границе раздела фаз сопровождается глубокими изменениями в третичной структуре, вследствие чего большинство гидрофобных групп ориентировано к воздуху. Агрегация денатурированных макромолекул и обусловливает нарастание прочности межфазного адсорбционного слоя. Возникаюш,ий при агрегации макромолекул тип структуры, образованный множеством межмолекулярных гидрофобных связей, напоминает -структуру параллельного типа. Фришем, Симхой и Эйрихом [153—155] для разбавленных растворов полимеров была разработана модель структуры адсорбционного слоя, по которой гидрофобные участки макромолекул обращены в газовую фазу, тогда как остальная часть адсорбированной макромолекулы образует как бы свободные петли и складки. Эта модель также не исключает возможности образования межмолекулярных связей, приводящих к возникновению межфазных прочных структур. [c.214]

    Поскольку в образовании вторичной и третичной структуры частично участвуют относительно слабые связи, физическое состояние белка, а следовательно, и активность фермента, гормона и антибиотика в значительной степени зависят от температуры, pH, присутствия солей и т. д. Нагревание вызывает распрямление белковой молекулы, которое вследствие большой положительной энтропии проявляется тем больше, чем выше температура [106]. Некоторые химические реагенты, такие, как мочевина и гуанидин, вызывают изменения в физическом состоянии и реакционной способности многих белков, разрывая главным образом стабилизующие структур г водородные связи, в то время как под действием органических растворителей пройсходит разрыв гидрофобных связей. Изменение pH обусловливает разрыв водородных связей в результате удаления протона и вызывает электростатическую неустойчивость. Эти изменения часто происходят очень резко и напоминают переходы первого порядка. [c.385]

    На основе анализа взаимодействи1[, придающих устойчивость каждому из названных уровней молекулярной организации, предложено характеризовать эти уровни относительной стабильностью связей. Так, первичная структура определяется ковалентными связями полипептидной цепи, вторичная — водородными связями между витками а-спирали или складками кросс-Р-формы, третичная — гидрофобными связями между неполярными радикалами, а также более слабыми водородными связями между далеким вдоль цепи звеньями и солевыми мостиками и т. и. Иными словами, восхождение от низших к высшим уровням молекулярной организации характеризуетс5[ постепенным ослаблением связей устойчивость же уровней с ослабленными связями обусловлена эффектами кооиера-тивности (см. стр. 128). Бернал дополнил схему представлением о четвертичной структуре — [c.60]

    Водородные связи, которые обычно образуются в результате взаимодействия фенольного гидроксила тирозина (14) и карбоксила глутаминовой (24) или аспарагиновой кислоты, могут вносить свой вклад в стабилизацию третичной структуры. Ионные взаимодействия, например между р-карбоксильной группой аспарагиновой кислоты (18) и е-аминогруппой лизина (8), также, по-видимому, участвуют в стабилизации структуры. Ди-сульфидные связи могут быть образованы между боковыми цепями или группами К двух остатков цистеина (4, 10) естественно ожидать, что белковая структура, фиксированная такими связями, будет очень стабильна. Недавно было высказано предположение, согласно которому внутренняя часть белковой молекулы представляет собой каплю масла . Это дает основания утверждать, что гидрофобные взаимодействия могут быть важным фактором в определении третичной структуры. Неполярные группы К таких аминокислот, как фенилаланин (11), лейцин (13), триптофан (15), изолейцин (16) и валин (19), несовместимы с высокополярными молекулами воды. Рентгеноструктурное исследование подтвердило предположение, что эти группы стремятся разместиться во внутренней части пептидной цепи и исключить воду из своего непосредственного соседства. Стабилизация структуры белка, являющаяся результа-татом этого процесса, имеет энтропийную природу, и, хотя для белков оиа не может быть точпо рассчитана, ее можно оценить, измеряя термодинамические параметры переноса углеводородов из неполярных растворителей в воду. Например, переход [c.381]

    Представление о последовательных уровнях макромолекулярной организации было впервые выдвинуто Линдерштрем-Лангом применительно к белкам и затем обобщено Дж. Берналом на любые типы М. Под первичной структурой белка понимают общее число пептидных связей в М. и характер чередования боковых радикалов аминокислотных остатков. Как известно, а,Ь-полипептиды способны принимать упорядоченные конформации типа а-спирали, кросс-Р-формы и др. Последовательность упорядоченных и неупорядоченных участков белковой цепи (однозначно предопределенную первичной структурой — см. ниже) называют вторичной структурой. Поскольку развернутая белковая М. в водной среде нестабильна из-за обилия гидрофобных боковых радикалов, она сворачивается в относительно компактное образование — квази-глобулу (отсюда термин глобулярные белки ) с устойчивой формой эта внешняя форма структурированной молекулы была названа третичной структурой. [c.58]

    ЛИ, которую играют в поддержании структуры те или иные связи, различают несколько структурных уровней. Первичная структура белка определяется числом и последовательностью ковалентно связанных аминокислот. Полипептидная цепь благодаря водородным связям, образующимся между кислородными атомами карбонильных групп и азотными атомами амидных групп, приобретает вторичную структуру она может образовать спиральную конфигурацию (а-спираль) или конфигурацию так называемого складчатого слоя. Третичной структурой называют определенное пространственное расположение пептидной цепи, обусловленное взаимодействием между различными ее боковыми группами. В поддержании третичной структуры участвуют другие водородные связи, ионные связи и неполярные (гидрофобные) взаимодействия. Поперечные связи, соединяюище различные участки полипептидной цепи, могут быть и ковалентными таковы, например, дисульфидные связи, образующиеся при окислении SH-rpynn. И наконец, благодаря взаимодействиям нескольких полипептидных цепей могут возникать надмолекулярные агрегаты. Такое строение (при котором белок состоит из определенного числа полипептидных цепей, или субъединиц) называют четвертичной структурой. При физиологических условиях белок находится в водной фазе. Поэтому между белками и диполями воды тоже имеет место взаимодействие. Полярные группы гидратированы. Факторы, вызывающие изменение заряда белков (концентрации ионов Н, Са , Mg , К и др.), неизбежно влияют также на степень гидратации, а тем самым и на степень набухания белков. [c.43]

    Можно выделить четыре тина взаимодействий, ответственных за под-дерлсание вторичной и третичной структуры белков 1) водородные связи между пептидными группами 2) водородные связи между боковыми цепями аминоКИС.Л0ТИЫХ остатков 3) иоиные связи и 4) неполярные, или гидрофобною, связи (фиг. 41). Отнюдь не исключено, что и другие типы взаимодействий также могут вносить вклад в поддержание свернутой формы некоторых полипентидных цепей, однако мы о них пока практически ничего не знаем. [c.110]

    Тенденция углеводородов и других неполярных молекул к ассоциации в водных растворах обусловлена образованием неполярных (или гидрофобных) связей. Имеется много указаний в пользу того, что неполярные связи — очень вал ный, а дюл Т быть и ваншейший, фактор, обеспечивающий поддержание вторично и третичной структуры белков. Наибо,лее полная инфор- [c.110]


Смотреть страницы где упоминается термин Третичная структура и гидрофобные связи: [c.101]    [c.641]    [c.134]    [c.593]    [c.24]    [c.46]    [c.122]    [c.224]    [c.14]    [c.54]    [c.688]    [c.60]    [c.202]    [c.221]    [c.863]    [c.277]   
Стратегия биохимической адаптации (1977) -- [ c.217 ]




ПОИСК





Смотрите так же термины и статьи:

Гидрофобные связи



© 2025 chem21.info Реклама на сайте