Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иммунная система у беспозвоночных

    Одно из существенных свойств эволюции иммунной системы состоит в том, что в процессе ее исторического развития появляющийся вновь признак не исключал предыдущего, от которого он произошел. Так, например, амебоциты (макрофаги) низших беспозвоночных, дав начало лимфоцитам, сохранились для иммунной системы, взяв на себя функцию подготовки антигена к иммуногенной форме и продукции иммунорегуляторных цитокинов. Возникновение доменов иммуноглобулиновых рецепторов В-клеток и антител от доменов Т-клеточных рецепторов не отменило значимую, развивающуюся активность этих последних структур. Примеры подобного рода можно было бы продолжить. Таким образом, специфическая иммунологическая реактивность млекопитающих впитала в себя весь исторический опыт развития иммунных форм защиты — от одноклеточных и низших многоклеточных до высших позвоночных животных. [c.446]


    На рис. 15.3 представлены вероятные этапы эволюции клеток крови и иммунной системы у позвоночных. Хотя иммуноциты имеются и у беспозвоночных, только позвоночные обладают лимфоцитами с высокой специфичностью и среди них клетками иммунологической памяти. Ка- [c.275]

    Рассмотрите основные различия между иммунными системами беспозвоночных и позвоночных. Какие факторы эволюции могли привести к развитию иммунной системы, имеющейся у позвоночных  [c.303]

    У растений и беспозвоночных животных лектины, вероятно, функционируют как защитные белки, предохраняя эти лишенные иммунной системы, а следовательно, и антител организмы от вторжения паразитарных микроорганизмов. Считают, что лектины располагаются на поверхности клеток растений. [c.349]

    Клетки и ткани, относящиеся к иммунной системе, у беспозвоночных [c.277]

    Следует еще раз подчеркнуть, что, несмотря на лишь ограниченные специфичность и память, характерные для распознавания алло- и ксеногенных трансплантатов у беспозвоночных, их иммунная система функционирует эффективно и успешно. Так или иначе, внедрение патогенных микроорганизмов и паразитов вызывает у беспозвоночных быстрый иммунный ответ, что и обеспечивает громадное разнообразие и изобилие этих животных. [c.284]

    К другим запланированным перестройкам относятся процессы, с помощью которых прокариоты отвечают на изменение окружающей среды, дрожжевые клетки переключают тип спаривания, а трипаносомы уклоняются от иммунного ответа хозяина. В некоторых системах (гены рибосомных РНК Xenopus и гены, кодирующие белки хориона у D. melanogaster) для удовлетворения потребности в генных продуктах происходит массовая амплификация специфических генов. Известны случаи, когда, напротив, наблюдается массовая утрата ДНК. У некоторых простейших, например у Tetrahymena, геном зародышевой линии заключен в микронуклеус, а гены экспрессируются в соматическом макронуклеусе. При переходе в макронуклеус может утрачиваться 90% генома, поскольку из ДНК исключаются почти все повторяющиеся последовательности. У множества многоклеточных беспозвоночных, в том числе у некоторых нематод, насекомых и ракообразных, большая часть высокоповторяющихся последовательностей в соматических стволовых клетках утрачивается, но в клетках зародышевой линии сохраняется. Этот феномен впервые наблюдали под микроскопом в 1887 г. как димину-цию хромосом во время развития нематод. Таким образом, утверждение, что каждая клетка целого организма имеет ту же ДНК, что и оплодотворенное яйцо, из которого она возникла, не совсем верно. Тем не менее вклад специфических перестроек ДНК в процесс дифференцировки соматических клеток, по-видимому, невелик подавляющее большинство уже клонированных генов имеют одинаковую структуру и в клетках зародышевой линии, и в соматических клетках. [c.358]


    В.Г. Галактионов через всю книгу провел ту мысль, что в ходе эволюции животных наблюдается тенденция к развитию адаптивного иммунитета постепенно, начиная с одноклеточных животных, усложняются белки, сходные с иммуноглобулинами, но у беспозвоночных они еще не имеют своего органа вероятно, иммунитет не сразу стал их основной функцией. Что именно делает при этом всё более усложняющийся иммунитет, Галактионов не сказал. Точнее, он привел лишь одно соображение с ростом числа клеток организма ему нужен механизм контроля за мутационным процессом. Это верно, но не говорит ничего о различиях в иммунных системах, поскольку у самых крупных организмов (деревья) работает самый простой тип иммунитета. [c.248]

    Иммунные системы беспозвоночных, очевидно, не включают в качестве компонентов ни иммуноглобулинов, ни взаимодействующих субпопуляций лимфоцитов, ни лимфоидных органов. Тем не менее само существование огромного числа и разнообразия беспозвоночных свидетельствует о наличии у них эффективньгх систем защиты собственного организма. [c.278]

    Беспозвоночные. Очаги гемо-лимфопоэза как самостоятельные морфологические образования являются приобретением наиболее развитых беспозвоночных. Так, професс иммунной системы на уровне кольчатых червей проявляется в том, что у представителей данного таксона впервые в филогенетической ветви первичноротых появляются лейкопоэтические органы , которые служат местом клеточной дифференцировки. Органы представляют собой парные узелки, расположенные в целоме вдоль кишки в каждом из сегментов, и связаны с дорсальным кровеносным сосудом. В узелках представлено большинство типов целомоцитов, включая лимфоцитоподобные клетки. У тех видов, которые обладают узелками, лейкопоэз происходит в этих морфологических образованиях. У видов, не имеющих узелков, клеточная дифференцировка осуществляется в целомической жидкости. [c.400]

    Тимус как центральный орган иммунной системы представляет собой эволюционное приобретение позвоночных животных. У всех беспозвоночных он отсутствует, даже в зачаточной форме. Возникновение данного органа у примитивных позвоночных животных было бесспорно ключевым событием в эволюции иммунитета, и по значимости его следует отнести к эволюционному процессу, подходящему под определение ароморфоза. Действительно, появление специальной органной структуры, основное назначение которой — генерализация в онтогенезе Т-клеточного пути развития, значительно повысило эффективность работы всей системы специфической иммунной зашиты. Как говорилось выше, именно в тимусе формируются основные функционально активные субпопуляции Т-клеток, именно в тимусе медиаторы иммунитета находят свое наиболее эффективное выражение в регуляции созревания Т-клеточного пула, именно в тимусе созданы условия для клоноспецифической экспансии Т-клеток и, наконец, именно от тимуса зависит заселение периферии эффекторными и регуляторными клетками, принимающими непосредственное участие в иммунном реагировании (гл. 7). [c.422]

    К стратегическим успехам эволюционного развития иммунной системы следует отнести возникновение как в линии первичноротых, так и в линии вторичноротых беспозвоночных специализированной, антигенраспознающей клетки — лимфоцита. Именно с лимфоцитом беспозвоночных связывается окончательная судьба антигенраспознающих рецепторов. Данный клеточный тип становится основным эффектором специфического иммунитета. Возникновение лимфоцита как основного клеточного инструмента иммунного реагирования следует отнести к категории гфо-морфного преобразования по Северцеву, так как это событие определило дальнейшее развитие целой системы организма, без функционирования которой эволюционное формирование многоклеточных было бы невозможно. [c.445]

    Изучение разнообразных видов позвоночных позволяет составить представление об эволюционном развитии иммунной системы вплоть до формирования ее сложноорганизованных механизмов у млекопитающих. Однако филогенез системы приобретенного иммунитета позвоночных, особенно его молекулярных основ, остается неясным, несмотря на многочисленные исследования иммунитета у беспозвоночных. В то же время изучение беспозвоночных проливает свет на происхождение врожденного иммунитета (например, фагоцитоза), полностью сформированного уже у позвоночных. Поскольку беспозвоночные чрезвычайно многочисленны и разнообразны — одиночные и колониальные формы, полостные и бесполостные, обладающие и не обладающие кровеносной системой, всего более 95 % всех видов животных на Земле — среди них можно найти много удобных объектов для экспериментальных исследований. [c.275]

    По сравнению с огромным разнообразием форм беспозвоночных организация позвоночных по общему плану довольно единообразна и все они принадлежат к одному типу хордовых. Хотя эволюционное древо позвоночных имеет многочисленные уровни и ветви, в том числе бесчелюстных, хрящевых рыб. костных рыб. амфибий, рептилий, птиц и млекопитающих, основные клеточные и молекулярные компоненты врожденного иммунитета у всех современных челюстноротых удивительно консервативны. Однако усложнению строения тела соответствует возрастание специализации лимфоидной ткани и функций лимфоцитов, а также увеличение разнообразия классов иммуноглобулинов. Самой сложной по структуре и функциям иммунной системой обладают млекопитающие. [c.285]


    Детальные сравнительные исследования разных видов беспозвоночных (насекомых) и позвоночных показывают, что система приобретенного иммунитета, которую мы сейчас обсуждаем, существует у хрящевых рыб (акул и скатов) и, следовательно, появилась по крайней мере 400—500 миллионов лет назад. У этих рыб есть гены, родственные генам вариабельной области Ig (IgV), или генам рецепторов Т-клеток (ТкР) [5]. В исследованиях Роберта Райсона (Raison) из Технологического университета Сиднея и других показано, что еще более примитивные позвоночные — круглоротые (миксины и миноги) — не имеют системы приобретенного иммунитета у них нет ни IgV, ни ТкР-генов. До сих пор идет поиск недостающего звена. Однако пока не известны эволюционные переходы между круглоротыми и хрящевыми рыбами. И нет никаких гарантий, что недостающие звенья когда-нибудь будут найдены, так как все они, возможно, вымерли. На рис. 3.4 показаны основные представители позвоночных, у которых работа иммунной системы изучена подробно. Даже у холоднокровных позвоночных — рыб — можно обнаружить основные элементы системы приоб- [c.75]

    Все позвоночные имеют иммунную систему. У беспозвоночных защитные системы более примитивны обычно их основу составляют фагоцитируюпдае клетки. Так называемые профессиональные фагоциты-главным образом макрофаги и полиморфноядерные лейкоциты-играют важную роль в защите от инфекции также и у позвоночных, но это лишь часть гораздо более сложной и совершенной защитной системы. [c.6]


Смотреть страницы где упоминается термин Иммунная система у беспозвоночных: [c.277]    [c.285]    [c.293]    [c.426]   
Иммунология (0) -- [ c.276 , c.277 ]




ПОИСК







© 2024 chem21.info Реклама на сайте