Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иммунная система эволюция

    С этой точки зрения, очень важной стадией в эволюции высших животных было появление иммунной системы. Исходя из недавни.х оценок, вероятность [c.28]

    Эволюция иммунной системы [c.275]

    Одно из существенных свойств эволюции иммунной системы состоит в том, что в процессе ее исторического развития появляющийся вновь признак не исключал предыдущего, от которого он произошел. Так, например, амебоциты (макрофаги) низших беспозвоночных, дав начало лимфоцитам, сохранились для иммунной системы, взяв на себя функцию подготовки антигена к иммуногенной форме и продукции иммунорегуляторных цитокинов. Возникновение доменов иммуноглобулиновых рецепторов В-клеток и антител от доменов Т-клеточных рецепторов не отменило значимую, развивающуюся активность этих последних структур. Примеры подобного рода можно было бы продолжить. Таким образом, специфическая иммунологическая реактивность млекопитающих впитала в себя весь исторический опыт развития иммунных форм защиты — от одноклеточных и низших многоклеточных до высших позвоночных животных. [c.446]


    Анализируя данные о строении и функционировании генов иммуноглобулинов, известные австралийские ученые высказывают гипотезу о том, что эволюция иммунной системы позвоночных могла осуществляться по Ламарку, т. е. путем наследования приобретенных признаков. [c.456]

    На рис. 15.3 представлены вероятные этапы эволюции клеток крови и иммунной системы у позвоночных. Хотя иммуноциты имеются и у беспозвоночных, только позвоночные обладают лимфоцитами с высокой специфичностью и среди них клетками иммунологической памяти. Ка- [c.275]

    Иммунная система вырабатывалась в процессе эволюции позвоночных для защиты от инфекций. Она состоит из миллионов клонов лимфоцитов. Лимфоциты каждого клона несут на своей поверхности рецептор, позволяющий им связывать ту или иную антигенную детерминанту -определенную группировку атомов в молекуле антигена. Существуют два класса лимфоцитов В-клетки, вырабатывающие антитела, и Т-клетки. которые осуществляют иммунные реакции клеточного типа. [c.228]

    Но существуют и другие точки зрения. Так, В. А. Адо с соавт. (1975) не сомневаются в полезности аллергической реакции Раз такая особенность человеческого организма существует и она не отменена в процессе эволюции, значит она полезна Авторы считают, что предстоит лишь выяснить, в чем же заключается польза. Однако Д. Уилсон (1974) относит аллергию к промахам иммунитета, а закрепление способности к развитию аллергических реакций в процессе эволюции объясняет так Иммунная система, позволяющая нам выживать лучше, чем какая-либо другая, не предназначалась для того, чтобы мы могли жить. Она просто возникла, причем ее достоинства (т. е. способность формировать иммунитет и уничтожать чужое .— О. А.) в целом перевесили недостатки . [c.249]

    Рассмотрите основные различия между иммунными системами беспозвоночных и позвоночных. Какие факторы эволюции могли привести к развитию иммунной системы, имеющейся у позвоночных  [c.303]

    Эволюция высших животных, используя ту же основную стратегию развития, шла в направлении создания все возрастающего числа специализированных клеточных типов и все более утонченных методов координации их активности (рис. 1-43). Две системы клеток высших животных представляют каждая в своем роде вершину сложности многоклеточной организации. Одна - это иммунная система позвоночных, клетки которой способны производить миллионы различных антител. Другая - это нервная система. У низших животных большая часть нейронных связей жестко генетически детерминирована, и программа поведения эволюционирует лишь благодаря мутациям генетического материала. У высших животных работа и структура нервной системы становились все более подверженными модификациям (обучению) благодаря способности нервных клеток изменять свои связи в ответ на вызванную внешними стимулами электрическую активность. [c.57]


    Иммунная система животных реализуется таким образом, чтобы ответная реакция наступала в нужный момент, была направлена на определенный антиген, была адекватна и строго ограничена во времени. Такая защитная функция возникла давно в процессе эволюции из клеток двух типов —лимфоцитов и макрофагов. Если эти условия защиты в силу определенных причин не могут обеспечить устойчивое состояние организма, он заболевает и погибает. Чтобы предотвратить заболевание, антиген метится специфическим антителом и присоединяется к Т-клетке или макрофагу. Роль макрофагов состоит в превращении антигенов в иммуноген, т. е. в соединение, способное индуцировать образование антител, и т. д. Механизм этого процесса и природы иммуногенов пока до конца не выяснены. [c.28]

    Как микробы могли влиять на эволюцию иммунной системы  [c.147]

    Все эти факты следует интерпретировать с известной осторожностью. Так, нельзя правильно оценить роль конкретного цитокина в организме зрелой особи, если его отсутствие в период развития иммунной системы привело к иммунологической недостаточности. Однако представляется вполне вероятным, что каждый цитокин при всем многообразии своих функций имеет среди них одну или несколько специфических, в связи с которой он сохранился в процессе эволюции. [c.190]

    Эволюция иммунной системы Иммуноглобулиновые Ун-локусы у акул [c.291]

    НИИ, обратном существующему во всех живых клетках — от ДНК к РНК.) Главная цель этой книги — показать, как новые данные молекулярной генетики разрушают построения неодарвинистов, рассматривающих отбор случайных генетических вариантов в качестве единственного фактора эволюционных изменений. Мы хотим доказать актуальность новой теории эволюции иммунной системы, основанной на объединении концепций Дарвина и Ламарка. [c.28]

    Моноклональные антитела У млекопитающих в ходе эволюции выработался сложный набор клеточных систем, защищающих организм от токсичных веществ и инфекционных агентов. Составной частью защитной реакции является индуцированная выработка клетками лимфатической системы специфических белков (антител), которые соединяются с чужеродными веществами (антигенами) и при помощи других белков иммунной системы, включая системы комплемента, нейтрализуют их эффект. В ответ на иммунологический стимул каждая антителопродуцирующая клетка синтезирует и вьгделяет единственный вид антител, которые с высоким сродством распознают отдельный участок (эпитоп, антигенную детерминанту) молекулы антигена. Поскольку в мо- [c.184]

    За последние 45 лет мы стали свидетелями бурного роста новой области науки — молекулярной генетики. Она преобразует наши представления о механизмах наследственности и эволюции жизни на Земле. Пора проанализировать уроки этого периода и изложить их в доступной для широкого круга читателей форме. Революционные представления Чарлза Дарвина о естественном отборе как главной движущей силе эволюции сейчас превратились в догму. Обновление наших взглядов на эволюцию требует учета данных, полученных молекулярной генетикой, особенно — молекулярной генетикой иммунной системы. К концу двадцатого столетия в этой области молекулярной биологии выходит на сцену и становится рядом с Чарлзом Дарвином другой дедушка эволюционной теории, французский биолог Жан Батист де Ламарк. Поэтому сейчас следует рассмотреть идеи и проблемы, еще недавно казавшиеся еретическими Работает ли принцип Ламарка в Природе Насколько проницаем барьер Вейсмана (теоретический барьер между клетками тела и половыми клетками — сперматозоидами и яйцеклетками). Могут ли наследоваться приобретенные признаки Если да, можем ли мы описать процесс такого наследования молекулярными терминами  [c.19]

    Иммунная система выработалась в процессе эволюции позвоночных как средство защиты от заражения микроорганизмами и более крупными паразитами. Однако большая часть сведений об иммунитете была получена в результате изучения реакции лабораторных животных на введение неинфекционных агентов, таких как чужеродные белки и полисахариды. Почти любая макромолекула, чуждая 01Я анизму реципиента, может вызвать иммунный ответ. Вещество, способное вызвать иммунный ответ, называют янтнгеном. Самое удивительное то, что иммунная система может различать антигены, весьма сходные между собой, например два белка, различающиеся только одной аминокислотой, или два оптических изомера. [c.6]

    Итак, мы представили вам две, отнюдь не несовместимые, концепции. Первая — традиционная неодарвинистская теория о том, что важная для эволюции генетическая изменчивость существует до того, как подействует селективная сила (естественный отбор). И вторая — традиционно отвергаемая ламарков-ская теория о том, что генетическая изменчивость возникает одновременно с отбором. Последняя концепция особенно важна для процессов, протекающих в иммунной системе, для кото-рьк селективная сила, или стимул внешней среды (инфекционное заболевание), действует одновременно с появлением новых генетических вариантов. [c.23]


    В процессе эволюции иммунной системы выработался целый ряд различных механизмов, приводящих к большому разнообразию антиген-связывающих участков антител. Только часть из этих механизмов связана с описанными выше соматическими перестройками ДНК в ходе развития В-лимфоцитов. Эксперименты по подсчету числа генов с использованием метода гибридизации ДНК (см. разд. 4.5.5) показывают, что в геноме мыши, видимо, содержится несколько сотен Ук-сегментов, сходное число Ун-сегментов и только два Ух-сегмента. Из этого можно вычислить, что путем комбинирования различных унаследованных У-, D- н J-сегмеитов у мыши может образоваться по меньшей мере 10000 разных Ун-областен и 1000 разных yL-областей. [c.40]

    Хорошо известно, что большинство опухолевых клеток несут антигены, которые опознаются иммунной системой как чужие. Иммунный ответ на эти антигены осуп] ествляется через иммунные клетки, такие, как Т-лимфоциты. В этой реакции могут принимать участие и другие, не относящиеся непосредственно к иммунной системе клетки (например, макрофаги или клетки-убийцы). Подобные клетки проникают в опухоль и развивают в ней цитотоксическую ) активность, направленную против опухолевых клеток. Динамика этого процесса в целом чрезвычайно сложна и здесь не будет рассматриваться (более детальное обсуждение см. в [7.29, 30, 32 ) ). Мы сконцентрируем внимание на ситуациях, когда иммунную систему можно рассматривать как квазистационарную на больших временных интервалах, значительно превышающих среднее время между последовательными актами размножения опухолевых клеток. Тогда имеет смысл представить цитотоксические реакции между цитотокси-ческими клетками, проникшими в опухоль, и опухолевыми клетками в виде двухступенчатого процесса типа (7.41). Популяция цитотоксических клеток обозначается через У (хищники), X— это популяция-мишень опухолевых клеток (жертвы), Z — численность комплексов, образованных присоединением V к X. Процесс цитолиза (7.41) может быть точно описан уравнениями эволюции (7.42, 43). В табл. 7.1 приведены характерные значения констант = также соответствующие [c.243]

    Образование антител и их функции. Живые организмы постоянно подвергаются атаке как извне-со стороны бактерий и вирусов, так и изнутри-со стороны клеток, которые в результате случайных событий приобретают способность неограниченно делиться и формировать опухоли. В ходе эволюции выработалась сложная защитная система, состоящая из ряда клеточных и гуморальных факторов. Эта система называется иммунной, а изучающая ее наука-иммунологией [100]. На рис. 4.61 представлена сильно упрощенная схема иммунологической защиты и ее основные компоненты. Указаны также те компоненты, для которых обнаружены генетические дефекты. Важнейшие структуры иммунной системы-лимфоциты-обладают рецепторами к антигенам. Рецепторы лимфоцитов (и Т-, и В-клеток) закодированы в геноме и сходны по своей структуре, однако гены для этих двух типов рецепторов различны и локализуются в разных хромосомах. Секрети-руемые рецепторы В-клеток (антитела) представлены иммуноглобулинами. Рецепторы Т-клеток не секретируются. [c.100]

    Учебник написан на основе курса лекций, составленных в соответствии с программой биологических, медицинских и ветеринарных высших учебных заведений и читаемых автором в течение последних лет на биологическом факультете МГУ. На базе самых современных научных материалов по молекулярной биологии, генетике, вирусологии, цитологии, эмбриологии рассматриваются проблемы молекулярной и клеточной иммунологии, вопросы частных проявлений иммунитета и его нарушений. Особый интерес представляет раздел по сравнительной иммунологии, где рассмотрено станоатение иммунной системы в фило- и онтогенезе и излагается собственная позиция автора в отношении роли специфического иммунитета в прогрессивной эволюции животного мира. [c.2]

    В книге пять частей Молекулярная иммунология , Клеточная иммунология , Частные проявления иммунитета , Нарушения иммунитета , Сравнительная иммунология . Особого упоминания заслуживает, как мне кажется, заключительная часть. Выходившие до сих пор учебники по иммунологии не рассматривали в обобщенном виде вопросы онто- и филогенеза иммунной реактивности. Именно это обстоятельство определило включение в нею части Сравнительная иммунология с двумя заключительными главами Онтогенез иммунной системы и Эволюция иммунитета , ще помимо современного фактического материала изложены собственные взгляды автора на роль специфического иммунитета в протрессивной эвсмпоции мира животных. [c.3]

    Тимус как центральный орган иммунной системы представляет собой эволюционное приобретение позвоночных животных. У всех беспозвоночных он отсутствует, даже в зачаточной форме. Возникновение данного органа у примитивных позвоночных животных было бесспорно ключевым событием в эволюции иммунитета, и по значимости его следует отнести к эволюционному процессу, подходящему под определение ароморфоза. Действительно, появление специальной органной структуры, основное назначение которой — генерализация в онтогенезе Т-клеточного пути развития, значительно повысило эффективность работы всей системы специфической иммунной зашиты. Как говорилось выше, именно в тимусе формируются основные функционально активные субпопуляции Т-клеток, именно в тимусе медиаторы иммунитета находят свое наиболее эффективное выражение в регуляции созревания Т-клеточного пула, именно в тимусе созданы условия для клоноспецифической экспансии Т-клеток и, наконец, именно от тимуса зависит заселение периферии эффекторными и регуляторными клетками, принимающими непосредственное участие в иммунном реагировании (гл. 7). [c.422]

    В сложном многоклеточном организме наряду с пищеварительной, выделительной, нервной, двигательной, гормональной, репродуктивной и другими существует и система самообороны — иммунитет. Не рассматривая специально эволюции системы иммунитета, отметим, что лимфоидный аппарат как основа специфического распознавания появляется уже у круглоротых. Млекопитаюпще, и в частности человек, обладают высокоразвитой, динамичной и эффективной системой иммунитета. Здесь и далее, анализируя устройство иммунной системы и роль клеточных мембран в механизмах ее функционирования, мы будем оперировать лишь данными об иммунитете у человека и мыши. К настоящему времени иммунная система у этих двух видов изучена несравненно лучше, чем у любых других биологических объектов. [c.8]

    Проникшие в ткань клетки бактерий вначале могут быть атакованы действующими во внутренней среде организма механизмами врожденного и.ммунитета. Множество компонентов бактериальных клеток иммунная система распознает без участия антигенспецифичных рецепторов В- или Т-клеток — благодаря действию филогенетически древних механизмов грубого распознавания, появившихся в эволюции раньше антигенспецифичных Т-клеток и иммуноглобулинов. В результате такого распознавания вызывают иммунный ответ обшие для разных бактерий клеточные компоненты. Многие бактерии, например непатогенные кокки, по-видимому, устраняются из тканей организма в результате действия именно таких механизмов, без формирования специфического (адаптивного) иммунного ответа. Пути грубого распознавания и его мишени - общие микробные компоненты - перечислены на рис. 17.4. Примечательно, что используемый для определения примеси бактериального липополисахарида (Л ПС) в лекарственных препаратах ли- [c.318]


Смотреть страницы где упоминается термин Иммунная система эволюция: [c.218]    [c.405]    [c.430]    [c.277]    [c.285]    [c.287]    [c.36]   
Иммунология (0) -- [ c.276 , c.277 , c.278 , c.279 , c.280 , c.281 , c.282 , c.283 , c.284 , c.285 , c.286 , c.287 , c.288 , c.289 , c.290 , c.291 , c.292 , c.293 , c.294 , c.295 , c.296 , c.297 , c.298 , c.299 , c.300 , c.301 , c.302 ]

Что если Ламарк не прав Иммуногенетика и эволюция (2002) -- [ c.75 ]




ПОИСК







© 2025 chem21.info Реклама на сайте