Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иммунная ый основной клеточный процесс

    Иммунное воспаление — гиперчувствительность замедленного типа (ГЗТ) представляет собой эффекторную фазу специфического клеточного иммунного ответа и включает следующие события активацию цитокинами сосудистого эндотелия, рекрутирование моноцитов и лимфоцитов из кровяного русла и тканей в очаг ГЗТ, активацию функций макрофагов лимфокинами в очаге ГЗТ, элиминацию причинного антигена путем очищения очага ГЗТ от возбудителей и/или повреждение тканей секретируемыми продуктами активированных макрофагов и лимфоцитов. Основными участниками иммунного воспаления являются моноциты/макрофаги, Т-лимфоциты (ТЫ) и эндотелиальные клетки (см. рис. 6). В процессе иммунного воспаления ведущую роль играют следующие цитокины IFN-y, TNF-a, TNF- , IL-1, IL-6. В реакциях ГЗТ различают острую фазу и стадию хронического воспаления. Острая фаза по своим проявлениям сходна с ранним воспалительным неспеци- [c.199]


    Ферментный контроль обеспечивает регуляцию большинства физиологических функций организма. Ингибиторы ферментов, как правило, или сильные яды, или сильные лекарственно активные вещества. Например, ацетилсалициловая кислота, или аспирин, — это эффективный ингибитор ферментов, которые синтезирует простагландины — весьма важные биологические регуляторы. Непосредственно сами ферменты находят в настоящее время применение в терапии некоторых заболеваний 3) принципиально важные работы в настоящее время ведутся в области выяснения молекулярной природы иммунного ответа. В процессе эволюции наш организм приобрел способность бороться с проникающими в него чужеродными клетками, чужеродными белками. Иммунология и иммунохимия в настоящее время переживают бурный расцвет, и мы являемся свидетелями появления новых вакцин, иммуностимуляторов, иммунодепрессантов. Регуляция иммунной реакции —один из наиболее ярких примеров достижений биологической химии в медицине 4) все большее внимание в последние годы начинает привлекать рецепторный уровень регуляции физиологических ответов организма. Если предшествующие этапы внедрения химии в биологию и медицину были связаны в основном со случайным поиском новых веществ, то настоящее время характеризуется все более глубоким проникновением в регуляторные химические механизмы физиологических ответов клетки. В различных клетках нашего организма можно вызвать те или иные ответы путем воздействия на специфические клеточные рецепторы, понимающие и чувствующие химические сигналы, заданные структурой вводимого соединения. Это высокоэффективные регуляторные механизмы, позволяющие в ряде случаев весьма тонко повлиять на метаболические процессы в клетке. Пока мало известно о структуре и природе рецепторов. Это определяется в основном тем, что клетка содержит весьма мало рецепторов. Однако объем химической информации о клеточных рецепторах непрерывно растет, и мы являемся свидетелями появления новых лекарственных соединений, созданных на основе этой информации. [c.199]

    Одно из самых значительных достижений рентгеноструктурного анализа белков последних лет, которое не может не повлиять на дальнейшее развитие биологии и становление ее новой области -молекулярной биологии клетки, состоит в начавшейся расшифровке трехмерных структур первых мембранных белков. Перед обсуждением полученных здесь результатов целесообразно кратко сообщить о том, что было известно об этих белках до исследования их с помощью рентгеновской дифракции. Если основные структурные особенности биологических мембран определяются молекулами липидного бислоя, то специфические функции мембран выполняются главным образом белками. Они ответственны за процессы превращения энергии, выступают в качестве рецепторов и ферментов, образуют каналы активного и пассивного транспорта молекул и ионов различных веществ через мембраны, охраняют организм от проникновения чужеродных антигенов и стимулируют иммунный ответ клеточного типа. В обычной плазматической мембране белок составляет около 50% ее массы. Однако в некоторых мембранах, например во внутренних мембранах митохондрий и хлоропластов, его содержание поднимается до 75%, а в других, например миелиновой мембране, снижается до 25%. Многие мембранные белки пронизывают липидный бислой насквозь и контактируют с водной средой по обеим сторонам мембраны. Молекулы этих белков, называемых трансмембранными, как и окружающие их молекулы липидов, обладают амфипатическими свойствами, поскольку содержат гидрофобные участки, взаимодействующие внутри бислоя с гидрофобными хвостами липидов, и гидрофильные участки, обращенные к воде с обеих сторон мембраны. Другая группа мембранных белков соприкасается с водой только с одной стороны бислоя [234, 235]. Одни из них погружены только во внешний или во внутренний слой мембраны, другие ассоциированы за счет невалентных взаимодействий с трансмембранными белками, третьи прикреплены к мембране с помощью ковалентно связанных с ними цепей жирных кислот, внедренных в липидный слой. [c.56]


    Основной клеточный процесс иммунной реакции — дифференцировка предшественника в эффекторную клетку — достраивается необходимыми регуляторными элементами. Ими служат другие клетки иммунного механизма, выполняющие функцию инициаторов, усилителей или ингибиторов основного процесса. При этом регуляторные клетки в ряде случаев также должны созреть до того, как начнут выполнять свою функцию (рис. 10). [c.33]

    Сложность иммунного ответа связана отчасти с тем, что другие клетки, в особенности Т-лимфоциты и макрофаги, изменяют реакцию В-клеток на антиген. В отсутствие активирующего действия антигена процесс деления большей части лимфоцитов заторможен. Т-клетки, а они представлены по меньшей мере тремя типами, могут либо стимулировать клеточное деление после связывания антигена, либо продолжать подавлять его. Видимо, торможение имеет место в том случае, когда иммунная система узнает о наличии в антигене детерминанты, присутствующей также на поверхностях собственных клеток организма. Совершенно очевидно, что различение своих и чужих антигенов чрезвычайно важно для иммунной системы. Аналогично тому как нервная система находится обычно в заторможенном состоянии и только иногда по ней осуществляется проведение потока импульсов, так и иммунная система в основном ингибирована и лишь в определенных случаях развивается клон плазматических клеток. Торможение иммунологической активности обусловлено отчасти синтезом антител против других антител, а именно против антител, функционирующих в качестве рецепторов на поверхности В-клеток. [c.366]

    Основной класс иммуноглобулинов, находящихся в крови, составляют IgG, производимые в больших количествах при вторичном иммунном ответе. Помимо активации системы комплемента Рс-область молекул IgG связывается со специфическими рецепторами макрофагов и нейтрофилов. В большой мере благодаря таким Рс-рецепторам эти фагоцитирующие клетки могут связывать, поглощать и разрушать внедрившиеся микроорганизмы, покрытые IgG-антителами, которые были выработаны в ответ на инфекцию (рис. 18-18). Различные типы лейкоцитов, несущие Рс-рецепторы, могут убивать также и покрытые IgG чужеродные эукариотические клетки, не фагоцитируя их. Этот процесс, называемый антителозаеисимой клеточной цитотоксичностъю, могут осуществлять макрофаги, нейтрофилы и эозинофилы (см. ниже), а также клетки-киллеры (К-клетки). Киллеры - это лимфоцитоподобные клетки, специализированные, по-видимому, для убивания аномальных клеток собственного организма (разд. 18.6.4). [c.233]

    В книге изложены основные принципы построения математических моделей биологических процессов и методы их исследования. Рассмотрены как модели, описывающие поведение систем во времени, так и модели, описывающие самоорганизацию в пространстве. Обсуждаются следующие вопросы биологическая информация и возникновение жизни, дифференциация тканей и морфогенез, динамика иммунной реакции, нарушение клеточного цикла и перерождение клетки. [c.112]

    В книге изложены основные принципы построения математических моделей биологических процессов и методы их исследования. Рассмотрены как модели, описывающие поведение систем во времени, так и модели, описывающие самоорганизацию в пространстве возникновение структур, распространение волн в активной среде и явление синхронизации. Обсуждаются следующие вопросы биологическая информация и возникновение жизни, дифференциация тканей и морфогенез, динамика реакции иммунной системы н ее взаимодействие со злокачественными образованиями, нарушение клеточного цикла и перерождение клетки. [c.2]

    Часть V, озаглавленная Молекулярная физиология , представляет собой переход от биохимии к физиологии. При изложении материала здесь используются многие из концепций, сформулированных в предьщу-щих разделах книги, поскольку физиологии приходится иметь дело с информацией, конформацией и процессами метаболизма в их взаимосвязи. Вначале описывается организация клеточных мембран и оболочек бактериальных клеток и выясняется вопрос, каким образом клетка определяет положение синтезируемых ею белков. Далее следует изложение молекулярных основ иммунного ответа как организм узнает чужеродные вещества. В следующей главе речь идег о проблеме преобразования энергии химических связей в координированное движение. Как показали исследования последних лет, актин и миозин-основные белки мышц-выполняют функцию сокращения в большинстве клеток высших организмов. Далее описываются молекулярные основы дей- [c.15]

    Весь процесс иммуногенеза состоит из двух основных этапов. Первый из них — строго специфический, связанный с распознаванием антигена лимфоцитами. Взаимодействие Т- и В-клеток с антигеном есть автономный, строго специфический процесс, являющийся одной из определяющих особенностей только иммунной системы. Второй этап — неспецифический, начинающийся после распознавания антигена. Он характеризуется функциональным созреванием примированных Т- и В-клеточных клонов и подвержен экзогенным воздействиям, в том числе регулирующему влиянию нейро-гормональной системы. [c.23]


    По определению, Т-система иммунитета включает тимус — место дифференцировки костномозговых предшественников Т-клеток (пре-Т-клетки) до потенциально зрелых форм, различные субпопуляции собственно Т-клеток (Т-хелпе1№1, Т-килле нь1> группу цитокинов, продуцируемых этими клетками. Основная функция системы связана с обеспечением клеточной формы иммунного реагирования — цитотоксическим (киллерным) разрушением генетически отличающихся клеток и тканей (чужеродных трансплантатов, раковых и вирустрансформированных клеток), а также с участием в регуляции как клеточного, так и гуморального иммунного ответа посредством включения в иммунный процесс Т-хелперов, Т-супрессоров и Т-клеточных цитокинов. [c.157]

    Тимус как центральный орган иммунной системы представляет собой эволюционное приобретение позвоночных животных. У всех беспозвоночных он отсутствует, даже в зачаточной форме. Возникновение данного органа у примитивных позвоночных животных было бесспорно ключевым событием в эволюции иммунитета, и по значимости его следует отнести к эволюционному процессу, подходящему под определение ароморфоза. Действительно, появление специальной органной структуры, основное назначение которой — генерализация в онтогенезе Т-клеточного пути развития, значительно повысило эффективность работы всей системы специфической иммунной зашиты. Как говорилось выше, именно в тимусе формируются основные функционально активные субпопуляции Т-клеток, именно в тимусе медиаторы иммунитета находят свое наиболее эффективное выражение в регуляции созревания Т-клеточного пула, именно в тимусе созданы условия для клоноспецифической экспансии Т-клеток и, наконец, именно от тимуса зависит заселение периферии эффекторными и регуляторными клетками, принимающими непосредственное участие в иммунном реагировании (гл. 7). [c.422]

    Адгезивные иолекулы — белки, экспрессирующиеся в основном на клеточной поверхности и обеспечивающие взаимодействия между клетками или между клетками и внеклеточным матриксом неспеци4 1ческие по отношению к иммунному ответу, они помогают его формированию, организуя миграцию клеток или усиливая межклеточные контакты в процессе распознавания антигена. [c.457]

    Каждая из клеточных популяций, обладая влиянием на другие, играет роль регулятора в своем микрорайоне или регионе удельный вес регулятора в общей реакции адаптации может меняться в зависимости от воздействующего фактора и характера патологического процесса. Ключевую роль при этом играет не какая-либо одна из популяций, а взаимодействие их между собой в кооперативном ответе. Примером может служить известная кооперация макрофагов и лимфоцитов в иммунном ответе, тучных клеток, нейтрофилов и макрофагов при остром воспалении, макрофагов, фибробластов, лимфоцитов и тромбоцитов при хроническом воспалении и заживлении ран, нейтрофилов, макрофагов, фибробластов и тучных клеток в коллагенолизе и т. д. При этом весьма вероятно, что кроме основных вышеназванных клеток в каждой из этих кооперативных реакций участвуют и все другие клетки соединительной ткани и крови. [c.168]

    Основным преимуществом живых вирусных вакцин является то, что они активируют все компоненты иммунной системы, вызывая сбалансированный ответ системный и местный, причем каждый из них состоит из иммуноглобулинового и клеточного ответов. Это особенно важно для инфекций, при которых важную роль играет клеточный иммунитет, а также для инфекций слизистых оболочек, при которых для оптимальной устойчивости необходим как местный, так и системный иммунитет. Местное инфицирование живой вирусной вакциной у непрайми-рованного хозяина обычно более эффективно стимулирует местный ответ, чем парентеральное введение инактивированной вакцины [12, 100, 136—139]. Живые вирусные вакцины стимулируют иммунный ответ на каждый из защитных антигенов, и это устраняет трудности, возникающие в связи с избирательным разрушением одного из защитных антигенов, которое может произойти в процессе приготовления инактивированной вакцины. [c.166]

    Пособие включает два раздела — теоретические и практические основы иммунологии. В первом разделе изложены основные сведения об иммунологии как науке, механизмах неспецифической резистентности и приобретенного иммунитета, функционировании иммунной системы и составляюЕХ ее основу иммунокомпетентных клеток при различных типах иммунного ответа, а также частные аспекты иммунологли, как-то аллергия, аутоиммунные патологические процессы, противовирусный, противоопухолевый и трансплантационный иммунитеты. Во втором разделе рассмотрены модуляторы и стимуляторы иммунитета, используемые для профил ики и лечения инфекционных болезней, опухолей и для предотвращения отторжения аллотрансплантатов, а также применяемые в идентификации и дифференциации микроорганизмов и других антигенов клеточные и серологические реакции иммунитета. [c.1]


Смотреть страницы где упоминается термин Иммунная ый основной клеточный процесс: [c.409]    [c.211]    [c.425]    [c.255]    [c.233]    [c.17]    [c.205]    [c.115]    [c.148]    [c.93]    [c.136]   
Биохимия мембран Клеточные мембраны и иммунитет (0) -- [ c.33 ]




ПОИСК







© 2025 chem21.info Реклама на сайте