Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость в турбулентном трехфазном

    При теоретическом анализе перепада давления в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем рассматривали слой, состоящий из насадки, псевдоожиженной потоком газа, и газовых пузырей, барботирующих через слой жидкости, удерживаемой опорной решеткой. Были предложены уравнения для определения перепада давления на решетках (в отсутствие насадки) в зависимости от скоростей газа и жидкости. Рассчитанные по этим уравнениям значения перепада давления согласуются с опытными данными авторов [c.677]


    Задержку жидкости определяли на экспериментальной установке (описанной в разделе II.А) методом импульсного ввода трасера. Опыты проводили при скоростях ниже точки захлебывания (контактный аппарат с турбулентным трехфазным псевдоожиженным слоем характеризуется очень высокими скоростями захлебывания ). Было установлено, что задержка жидкости не зависит от расхода газа, как и для слоя неподвижной насадки (это подтверждено данными ряда исследователей). [c.677]

    Существенные различия между скрубберами с орошаемой неподвижной насадкой и контактными аппаратами с турбулентным трехфазным псевдоожиженным слоем были отмечены Ченом и Дугласом Задержка жидкости в слое неподвижной насадки слагается из динамической и статической составляющих, причем последняя играет весьма ограниченную роль в процессах межфазного переноса. В то же время, в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем статическая задержка жидкости практически отсутствует вследствие движения насадки и, таким образом, вся удерживаемая жидкость принимает участие в массообмене между фазами. Этим, в частности, можно объяснить тот факт, что при одинаковых условиях работы скорости тенло-массопереноса в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем выше, чем в абсорберах с неподвижной насадкой .  [c.677]

    Автору, очевидно, остались неизвестными многочисленные работы по гидродинамике и массообменной способности аппаратов с турбулентным трехфазным псевдоожиженным слоем, опубликованные на протяжении последних 6—8 лет советскими и зарубежными исследователями. Это, естественно, значительно сузило объем информации по рассматриваемому вопросу, изложенной в данной главе. С целью восполнения этого пробела мы приводим список наиболее важных опубликованных работ [8—22]. В последних содержится достаточно обширная информация По ряду аспектов рассматриваемого процесса режимы трехфазного псевдоожижения начало полного ожижения и его зависимость от скоростей потоков ожижающих агентов, их физических свойств, а также от размеров и эффективной плотности элементов насадки динамическая высота слоя и газосодержание перепад давления в слое пределы существования трехфазного псевдоожиженного слоя интенсивность циркуляции элементов насадки в слое величина межфазной поверхности продольное перемешивание массообменная способность аппаратов с трехфазным псевдоожиженным слоем в процессах физической абсорбции, хемосорбции и ректификации бинарных жидких смесей. [c.675]


    За скорость начала псевдоожижения в контактном аппарате с турбулентным трехфазным слоем принимают максимальную скорость газа, при которой неподвижный слой сохраняет свою первоначальную высоту. Скорость начала псевдоожижения [c.676]

    В реакторах с трехфазным псевдоожиженным слоем используется мелкозернистый катализатор, как правило, с несферическими частицами. Исключение составляют гранулы ионообменных смол. Относительная скорость частиц приблизительно равна скорости их гравитационного осаждения в жидкости, но массообмен зависит еще и от степени турбулентности, возникающей в результате механического перемешивания и воздействия поднимающихся пузырей газа. [c.114]

    Турбулентное перемешивание жидкой и твердой фаз обеспечивает их хорошее контактирование в зоне реакции, вследствие чего улучшается массопередача и интенсивность подвода водорода к активным центрам катализатора, что благоприятно сказывается на получении целевого продукта. Интенсивность турбулентного перемешивания в трехфазном кипящем слое ослабевает с увеличением количества твердой фазы и скорости жидкой фазы и увеличивается с ростом скорости газовой фазы, но, как показывает опыт, до определенного предела. Эго объясняется, видимо, тем, что благоприятное влияние скорости газа, выражающееся в увеличении массопередачи, уже не компенсирует уменьшения длительности пребывания жидкой фазы реакционной смеси в зоне реакции. [c.93]

Рис. ХУ1П-9. Скорость начала псевдоожижения (а) и задержка жидкости (б) в трехфазном турбулентном псевдоожиженном слое. Рис. ХУ1П-9. <a href="/info/145168">Скорость начала псевдоожижения</a> (а) и <a href="/info/304494">задержка жидкости</a> (б) в <a href="/info/1916448">трехфазном турбулентном псевдоожиженном</a> слое.
    Механизм массопереноса к неподвижным частицам, омываемым потоком жидкости, дополнительно турбу-лизованной барботирующим газом, до сих пор полностью не раскрыт. Можно предположить, что он связан как со скоростью сплощного потока жидкости, так и с пульсациями, проникающими в пристенный слой от деформирующихся газовых пузырьков. Причем закономерности массопереноса из турбулентного ядра межзернового канала и из узких прослоек жидкости между частицами вблизи точек их соприкосновения будут различными. в таких сложных случаях для трехфазной системы обычно принимают [c.519]


Смотреть страницы где упоминается термин Скорость в турбулентном трехфазном: [c.270]    [c.69]   
Псевдоожижение (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Трехфазная ВДП



© 2024 chem21.info Реклама на сайте