Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Насадки неподвижные

    По способу действия теплообменные аппараты подразделяют на поверхностные и аппараты смешения. К первой группе относятся теплообменные аппараты, в которых теплообменивающиеся среды разделены твердой стенкой. В теплообменниках смешения теплопередача происходит без разделяющей перегородки путем непосредственного контакта между теплообменивающимися средами. Примером может служить конденсатор смешения (скруббер), заполненный насадкой. Жидкость стекает сверху вниз, пары или газ двигаются противотоком к ней. На нефтеперерабатывающих заводах преимущественное применение получили поверхностные теплообменники. По конструктивному оформлению они делятся на змеевиковые, типа труба в трубе и кожухотрубчатые — с неподвижными трубными решетками, с и-образными трубками и с плавающей головкой. [c.254]


    Капиллярная колонка . Без насадки или с неподвижной жидкой фазой на стенках с насадкой (неподвижная жидкая фаза на носителе) или колонка другого типа Температуры, ""С [c.441]

    После того как выбраны твердый носитель и неподвижная жидкая фаза, нужно решить, в какой пропорции их брать дпя приготовления сорбента (насадки) или, другими словами, какова должна быть концентрация в насадке неподвижной фазы (в весовых процентах). Большие концентрации неподвижной фазы, например 20%, дают следующие преимущества  [c.137]

    В переключающихся регенераторах насадка неподвижна и последовательно омывается теплым и холодным воздухом. [c.232]

    Выполнение реактора с насадкой в виде нескольких слоев вместо одного большого слоя обусловливается требованием регулирования температуры посредством теплообмена, а иногда необходимостью улучшить распределение газового потока или уменьшить потери давления. Большинство реакторов с неподвижным слоем снабжено устройством для теплообмена (рис. Х1-17). Широко применяются автотермические процессы, в которых осуществляется теплообмен между исходной и конечной смесями. Комбинации различных способов теплообмена могут быть применены в одном и том же аппарате (см. рис. Х1-8). Еще одним примером реактора с неподвижным слоем катализатора служат реакторы для окисления аммиака (рис. Х1-18). [c.371]

    Опыты показывают, что гидравлическое сопротивление при на-личии насадки из стеклянных колец Рашига существенно не изменяется по сравнению с сопротивлением чистой воды. Насадка из стеклянных шариков вызывает увеличение Ар примерно на 40%. При насадке из хлорвиниловых колец Ар уменьшается на 15—20%. Первые два вида насадки неподвижны. Хлорвиниловые кольца переходят в псевдоожиженное состояние при ш = 24 см сек. Возрастание относительной высоты газо-жидкостного слоя определяется удельным расходом газа пг = [2, 3]. Наличие насадки [c.26]

    Следовательно, расчет химических реакторов по уравнениям диффузионной модели можно применять только к трубчатым аппаратам без насадки или с насадкой из неподвижного катализатора. Для всех иных типов реакторов, и, в частности, реакторов емкостного типа с принудительной или естественной циркуляцией он является недостаточно обоснованным. [c.80]

    Осаждение кобальта на неподвижной насадке-пемзе (триадная схема). [c.52]

    Эффективность реакторов данного типа определяется хорошим распределением температуры, что обеспечивается передачей тепла радиацией от частицы к частице. Однако в большинстве случаев реакторы с неподвижным слоем содержат насадку, являющуюся катализаторной массой. Реакторы с инертной насадкой, основная роль которой заключается в улучшении контакта между фазами, здесь не рассматриваются. [c.371]


    В качестве неорошаемой колонны испытана башня как с неподвижным, так и с движущимся газом. Оказалось, что неорошаемая колонна также является хорошей преградой для взрывного и детонационного распада, В этом случае необходима большая высота насадки. [c.83]

    По такому принципу работают также аппараты и с другими конструктивными- модификациями. Аппараты с направленным барботажем также изготовляются в различных конструктивных модификациях. На рис. 156 показан элемент одного такого аппарата с зигзагообразным ходом пара по лабиринтным каналам, образованным вращающимся ротором и неподвижной насадкой. [c.164]

    Как мы видели, в газохроматографической колонке, кроме молекулярной диффузии вдоль потока газа, происходят еще процессы переноса молекул интересующего нас компонента со струями газа, омывающими зерна насадки (вихревая диффузия), и процессы массообмена с неподвижной фазой. Выше было показано, что все эти процессы вместе можно описать как эффективную диффузию с коэффициентом Это дает нам возможность использовать для кривой размывания с=-[(х, о интеграл уравнения [c.583]

    В выражение для общего коэффициента эффективной диффузии Дэ, кап. в капиллярной колонке нужно ввести член О для продольной диффузии [и этом случае, как отмечено выше, 7= , см. выражение (79)], член Од для динами ческой диффузии и, как и для колонки с насадкой, член ) для диффузии, эквивалентной задержке массообмена газа с неподвижной фазой  [c.588]

    Насадку готовят следующим образом. Неподвижную фазу в фарфоровой чаше растворяют в ацетоне, подогретом на водяной бане примерно до 30° С, и в полученный раствор вносят твердый носитель. Ацетон берут в таком объеме, чтобы весь носитель был покрыт раствором. [c.370]

    Из регенеративных печей наиболее широко распространены в промышленности печи двух типов 1) с неподвижной огнеупорной насадкой, 2) с движущейся насадкой. [c.46]

    Состояние проблемы управления температурным режимом в аппаратах с неподвижным слоем катализатора. Оптимальным режимом синтеза метанола является изотермический процесс [1987]. Степень приближения реального температурного режима к изотермическому зависит от конструкции насадки колонны. [c.326]

    В этой главе сначала будет дан общий обзор литературы по внутренним вставкам в псевдоожиженном слое, а затв.ч более детально рассмотрены три типа вставок, исследованных фундаментально горизонтальные и вертикальные вставки, неподвижная крупнокусковая насадка. [c.522]

    Неподвижная крупнокусковая насадка  [c.524]

    Другие авторы полагают, что перепад давления в слое псевдоожиженной насадки может быть рассчитан по уравнениям для неподвижной орошаемой насадки, [c.677]

    В. Неподвижные крупнокусковые насадки [c.538]

    Добавим, что в присутствии неподвижной насадки (шары, седла Берля, кольца Рашига) псевдоожиженные системы характеризуются более низкими коэффициентами теплоотдачи к поверхности Это, конечно, вызвано торможением псевдоожиженных мелких частиц элементами неподвижной насадки. [c.540]

    В последние годы в Канаде было выполнено значительное количество работ йо использованию насадки типа сетчатых цилиндров, открытых с торцов. Первые опыты показали что такие цилиндры размерами 13 X 13 мм из проволоки толщиной 0,5 мм значительно эффективнее неподвижных шаров, колец Рашига и седел Берля 1) сетчатые цилиндры занимают лишь — 5% объема слоя 2) движение твердых частиц тормозится в меньшей степени  [c.540]

    Невозможно рекомендовать тип вставки, оптимальной для всех практических случаев, поскольку каждый процесс, использующий технику псевдоожижения, в разной стенени зависит от отдельных параметров процесса. Вставка, полезная для одного процесса, может оказаться непригодной для другого. Сепарации частиц обычно стремятся избегать это, конечно, не относится к процессам классификации в псевдоожиженном слое, когда вставки, способствующие сепарации (горизонтальные сетки, неподвижная.насадка), безусловно, полезны. С другой стороны, если главным фактором является теплообмен, следует серьезно анализировать возможность использования вертикальных труб или стержней. [c.542]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]


    Задержку жидкости определяли на экспериментальной установке (описанной в разделе II.А) методом импульсного ввода трасера. Опыты проводили при скоростях ниже точки захлебывания (контактный аппарат с турбулентным трехфазным псевдоожиженным слоем характеризуется очень высокими скоростями захлебывания ). Было установлено, что задержка жидкости не зависит от расхода газа, как и для слоя неподвижной насадки (это подтверждено данными ряда исследователей). [c.677]

    Существенные различия между скрубберами с орошаемой неподвижной насадкой и контактными аппаратами с турбулентным трехфазным псевдоожиженным слоем были отмечены Ченом и Дугласом Задержка жидкости в слое неподвижной насадки слагается из динамической и статической составляющих, причем последняя играет весьма ограниченную роль в процессах межфазного переноса. В то же время, в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем статическая задержка жидкости практически отсутствует вследствие движения насадки и, таким образом, вся удерживаемая жидкость принимает участие в массообмене между фазами. Этим, в частности, можно объяснить тот факт, что при одинаковых условиях работы скорости тенло-массопереноса в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем выше, чем в абсорберах с неподвижной насадкой .  [c.677]

    Токсичные и очень летучие вещества лучше подавать в куб из закрытого сосуда, создавая в последнем избыточное давление по окончании заполнения куба его необходимо сразу же закрыть. Для обеспечения предварительного смачивания содержимого ректификационной колонны (насадки, неподвижные или движущиеся контактные устройства) рекомендуется по возможности загружать разделяемую смесь в куб сверху через дефлеп атор. В тех случаях, когда необходимо предотвратить увлажнение разделяемой смеси, колонну перед загрузкой продувают теплым воздухом (феном) при включенном электронагревателе кожуха. [c.480]

    Аппарат ПАВН работает следующим образом при пуске аппарата в его верхнюю часть подают жидкость, которая, стекая вниз, омывает насадку, неподвижно лежащую на опорно-распределительной решетке. Затем в нижнюю часть аппарата подают газ противотоком жидкости. При определенной нагрузке по газу происходит взвешивание насадки и жидкости и непрерывное хаотическое движение элементов насадки. Основная особенность аппаратов ПАВН, определяющая гидродинамический режим и конструкцию реактора, — это наличие в них взвешенного трёхфазного слоя. [c.245]

    В зависимости от применения, приче.м следует использовать в качестве насадки неподвижные фазы, химически привитые к носителю, например Du Pont Permaphase и Zorbax [c.148]

    Пример 3, Рассчитать радиальный коэффициент теплопроводности в реакторе с неподвижным слоем гранулированного катализатора и проходящим через него жидкостным потоком реакционной смеси. Теплопроводность жидкой фазы и материала катализатора соответственно равна Хр = 0,147 ккал/м ч град, = = 0,043 ккал/м ч град. Порозяость насадки катализатора е = = 0,35. Радиальный коэффициент цереиоса вещества слоя катализатора Dj. = 5,5 10 м /ч. Плотность жидкой фазы р = = 1060 кг/лЗ, ее теплоёмкость Ср = 0,461 ккал/кг град. [c.71]

    Ячеистая модель в виде совокупности последовательно соединенных ячеек-реакторов полного смешения во многих случаях, особенно для реакторов с насадкой и жидкостньш потоком, не дает удовлетворительных результатов при объяснении как явлений переноса веш е-ства, так и скорости химического процесса. В частности, с помош ью ее не удается объяснить для таких реакторов сильно асимметричный характер кривых дифференциальной функции распределения времени пребывания. Поэтому был предложен ряд ячеистых моделей реакторов с неподвижным слоем катализатора (насадки) [52—54, 83, 101, 109, 123, 1291. [c.95]

    Коэффициент теплоотдачи к поверхности частиц в неподвижном слое. В последнее время были разработаны экспериментальные методы для непосредственного измерения коэффициента теплоотдачи между поверхностью частиц и движущимся газом в установившемся состоянии. Глазер и Тодос применяли твердые металлические шарики, кубики и цилиндры электрический ток пропускали через насадку, при этом выделялось тепло, которое непрерывно уносилось потоком газа, проходящим через слой. Баумейстер и Беннетт генерировали тепло в слое стальных шариков, пропуская ток высокой частоты через витки, окружавшие слой насадки. Обе группы исследователей установили заметное влияние отношения диаметров насадки и аппарата. Однако Глазер сумел экстраполировать результаты и найти зависимость, пригодную для промышленных процессов. Его уравнение при 100<(рНе<9200 имеет вид  [c.271]

    Массообмен с неподвижной фазой. Если для упрощения пренебречь процессами диффузии в порах зерен насадки (так называемой внутренней диффузией), что справедливо для крупнопористых адсорбентов и носителей, то надо в е же еще учесть, что в реальном процессе адсорбция и десорбция на поверхности неподвижной фазы происходят с конечной скоростью, т. е. в течение некоторого, причем разного времени. Это также ведет к размыванию полосы. Простейшее уравнение кинетики массообмена газа с неподвимшой фазой имеег [c.581]

    Приводится рекомендация размещать в слое вертикальные поверхности, например трубчатые или полукруглые, чтобы воспрепятствовать чрезмерному росту пузырей (более 4—8 диаметров труб). Детального анализа перемешивания в упомянутой 1 работе не приводится вероятно, оно аналогично рассмотренному ранее для небольших аппаратов диаметром менее 305 мм. Исследования влияния аналогичных вертикальных поверхностей продолжаются Другой модификацией явилось псевдоожижение мелких частиц в просветах неподвижной крупнокусковой насадки (полупсевдо-ожиженный слой). Было исследовано влияние тормозящего дей- [c.310]

    Когда в 40-х годах делались первые шаги промышленного использования псевдоожиженных систем, мало кто знал что-либо о природе и свойствах образующихся газовых пузырей, однако наличие или отсутствие последних вскоре стали связывать с однородностью псевдоожижения. Уже на этой ранней стадии развития Мэтисон предложил для диспергирования пузырей наполнить реактор кольцами Рашига или седлами Берля. В этих условиях мелкие твердые частицы будут псевдоожижены в многочисленных просветах между крупными кольцами или седлами иными словами, слой будет заполнен мелкими вставками. К реализации этой идеи не приступали много лет лишь недавно ей было уделено значительное внимание в североамериканских лабораторных исследованиях. Используемая неподвижная насадка может быть разделена на два больших класса  [c.538]

    При изучении радиального переноса тепла обнаружено , что эффективная теплопроводность в полупсевдоожиженном слое примерно в 75 раз выше, нежели в неподвижном. При этом рассматриваемая теплопроводность повышается с ростом размера элементов насадки и уменьшением размера псевдоожиженных частиц это является, очевидно, следствием увеличения просветов между элементами непсевдоожиженной насадки, что способствует более интенсивному движению твердых частиц. Коэффициент теплоотдачи к стенкам аппарата при повышении скорости ожижающего агента проходит через максимум. Оказалось, что играет роль форма элементов насадки заметно большие коэффициенты теплоотдачи были получены при использовании латунных цилиндров, нежели стальных шаров. [c.539]

    Возрастает степень химического превращения. При изучении влияния сетчатой насадки на изомеризацию циклопропана (реакция первого порядка) установлено что в аппаратах диаметром до 150 мм нри наличии такой насадки превращения выше, чем в обычном псевдоожиженном слое, хотя и ниже, чем в неподвижном. Найдено также , что при восстановлении концентрата железной руды с участием сетчатой насадки повышается степень использования водорода. Слой с сетчатой насадкой приближается по своим свойствам к псевдоожиженному слою без газорых пузырей, и химическое превращение в нем должно быть выше поскольку меньше проскок газа с пузырями без контакта с твердыми частицами. [c.541]

    Тепло-массообмен исследовали в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем квадратного поперечного сечения 305 X 305 мм, заполненным полыми поли-этиленовымп шариками в качестве ожижающих агентов использовали воздух и воду. Было замечено, что в процессе абсорбции аммиака из смеси с воздухом высота единицы переноса (ВЕП) уменьшается с повышением расхода жидкости, но увеличивается с возрастанием расхода газа. Кроме того, отмечали падение ВЕП при уменьшении статической высоты слоя. Сравнение данных по абсорбции аммиака в аппаратах с неподвижной насадкой и с турбулентным трехфазным псевдоожиженным слоем показало, что последние более эффективны. [c.678]


Смотреть страницы где упоминается термин Насадки неподвижные: [c.508]    [c.97]    [c.75]    [c.133]    [c.318]    [c.311]    [c.538]    [c.539]    [c.658]   
Процессы и аппараты химической технологии Издание 3 (1966) -- [ c.464 ]




ПОИСК







© 2024 chem21.info Реклама на сайте