Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксация механическая результаты

    Под старением понимают самопроизвольное необратимое, обычно неблагоприятное, изменение свойств материала при хранении и эксплуатации, приводящее к потере им работоспособности. Старение является результатом воздействия на полимер энергетических (тепло, свет, радиация, механические напряжения и т. д.) или химических (кислород и другие химически активные вещества) факторов. В зависимости от того, какой из этих факторов является определяющим, различают тепловое, световое и другие виды старения. В эксплуатационных условиях на изделия обычно действуют одновременно несколько факторов, в результате чего через некоторое время происходит потеря их работоспособности. Практически важным случаем старения является одновременное воздействие механических напряжений и агрессивной среды, в частности утомление при многократных деформациях в активной среде, разрушение при трении и износе в агрессивной среде, химическая релаксация. [c.125]


    Молекулы или структурные элементы любой материальной системы способны к перемещению друг относительно друга в результате теплового движения. Поэтому напряжение, которое создается в теле благодаря его деформации, может уменьшаться, рассасываться в результате ослабления внутренних сил. Такой процесс называется релаксацией, и способность тела к релаксации является важной структурно-механической характеристикой. Мерой ее является период релаксации г — время, в течение которого начальное напряжение уменьшается в е раз. Период релаксации жидкостей очень мал (для воды, например, 3 10" с) и возрастает с увеличением вязкости. Для твердых тел период релаксации велик. Для идеальных кристаллов процесс релаксации протекает бесконечно медленно. Одна и та же система молсет вести себя как жидкость (если длительность воздействия нагрузки i т) и как твердое тело (если t т). Например, лед при быстрых воздействиях ведет себя как хрупкое тело (т для кристаллов льда 13 ООО с), а при длительных — способен течь движение ледников подчиняется закономерностям, характерным для вязких жидкостей. Таким образом, между истинным твердым телом и жидкостью существует непрерывный ряд переходов, обусловленный различными внешними условиями. [c.428]

    Уже давно было известно, что изотермическая релаксация механических напряжений а при постоянной деформации, а также изотермическое развитие деформации е под действием постоянного напряжения (ползучесть) в случае аморфных полимеров могут быть представлены как результат наложения друг на друга множества различных одновременно протекающих релаксационных процессов, каждый из которых характеризуется либо своим временем релаксации Т/ (процесс релаксации напряжения)  [c.315]

    Из этой формулы следует, что изменение объема или температуры действительно может повести к соответствующему изменению времени релаксации, но это, по-видимому, относится к времени релаксации механической ползучести. Изменение объема при изменении температуры происходит в результате изменения амплитуды колебаний молекул и сегментов, причем не вполне ясно, ка1 идут релаксационные процессы, каково влияние дефектов структуры, пустот и т. п. [c.67]

    Контрольные опыты не показали изменения степени кристалличности в поликарбонате после поляризации — полимер остается аморфным. При измерении релаксации механических напряжений выяснилось, что скорость релаксации существенно замедляется в электретах по сравнению с исходным образцом. Такое замедление процесса релаксации может быть обусловлено повышением межмолекулярного взаимодействия, например, вследствие упорядочения элементов структуры. Можно предположить, что в результате поляризации в пленке образуется плоскостная текстура. Однако измерения скорости звука в электретах не подтверждают этого предположения. В случае ориентации скорость звука при распространении звуковой волны в плоскости пленки должна возрастать. В эксперименте происходит обратное скорость звука уменьшается с 1530 м/с у исходной пленки до 1300 м/с у электрета. [c.212]


    Об этом же говорят и данные исследования динамических механических и диэлектрических свойств полимеров, показывающих присутствие широкого спектра времен механической и диэлектрической релаксации. Используя предположение о существовании широкого спектра времен корреляции, удается объяснить эффекты, наблюдаемые методом ЯМР, а также получить хорошее соответ ствие между данными исследования механических и диэлектрических свойств полимеров и результатами измерения времен Т] и тз. Еще одно применение импульсной техники связано с измерением коэффициентов самодиффузии в расплавах полимеров методом спинового эха. Зн ание коэффициента самодиффузии очень важно, [c.275]

    В обоих рассмотренных нами случаях в деформированном образце происходят изменения, скорость которых определяется отношением Г[1Е — стремлением образца к равновесию. Сходство и различие этих двух видов релаксации становятся особо ясными и наглядными при применении механических моделей, где упругое сопротивление изображается в виде абсолютно упругой пружины, а вязкое сопротивление (течение) — при помощи поршня, движущегося в вязкой среде. При максвелловской релаксации механические элементы соединены последовательно, и деформации, соответствующие каждому элементу, складываются. Под влиянием одного и того же напряжения происходит мгновенная деформация пружины, равная а1Е, после чего начинается медленное перемещение поршня со скоростью <у1 . Релаксация напряжения в деформированном образце объясняется постепенным ослаблением натяжения пружины в результате движения поршня (см. рис. 78). При запаздывающей упругости, когда пружина и поршень соединены параллельно, напряжение распределяется между упругим и вязким элементами, а деформации, соответствующие каждому из них, одни и те же. Одновременно и с одинаковой скоростью происходит растягивание пружины и смещение порш- [c.299]

    Релаксационный характер деформации полимеров оказывает влияние на многие механические, диэлектрические и другие свойства их. Так, при периодически действующей внешней силе деформация полимера в условиях, когда время релаксации значительно, будет в той или другой степени запаздывать по сравнению с действием силы. В результате этого при короткопериодических (высокочастотных) воздействиях полимер проявляет более высокий модуль упругости (точнее — модуль эластичности), а следовательно, и меньшую эластичность, чем при постоянно действующей силе. [c.581]

    Формулы (623) и (624) совершенно подобны формулам (350) — (352), полученным для механической релаксации. Оказываются подобными и экспериментальные результаты. В этом нетрудно убедиться, если сравнить данные рис. 152 и рис. 85. [c.350]

    В этих опыта с можно наблюдать так называемый период релаксации [68] и малое сопротивление разрушению [92]. Эти данные показывают ошибочность мнений многих авторов о существовании особых механических свойств глин, проявляющихся при создании на них нагрузки, будь то горное давление или моделирование его в лабораторных условиях. Здесь наблюдается типичное проявление адсорбционных свойств глин. В результате набухания частиц глин под действием паров воды (капиллярная конденсация), находящихся в воздухе, образцы глин снижают свою механическую прочность, и при соответствующем сочетании набухания частиц глин и внешней нагрузки на образец последний разрушается. При этом наблюдается адсорбционное понижение твердости, а не какие-либо особые механические свойства глин. Поскольку глина из СКВ. 9 обладает значительно меньшей удельной поверхностью, чем глин из СКВ. 32, то для снижения ее прочности до разрушения требуемся значительно меньшее количество воды для образования равновесных гидратных слоев. Но нагрузка на эту глину была почти вдвое меньше, чем на глину скв. 32, вследствие чего разрушение последней произошло раньше. [c.91]

    После окончания тепловой релаксации капли и перехода ее на участок испарения последствия кинематической коагуляции имеют главным образом механический характер и могут быть описаны выражениями, приведенными в 2.7. Из-за влияния коагуляции на тепломассообмен размер и скорость капли могут изменяться на участке испарения вблизи высокотемпературной поверхности. Возрас- тание размера и замедление капли в результате слияний с более мелкими каплями приведет к увеличению продолжительности воздействия- на нее излучения со стороны стенки. С развитием процесса коагуляции средний размер капли сдвигается в сторону увеличения, а это сокращает межфазную поверхность и скорость испарения для системы капель в целом. Преобладание одного из двух указанных факторов —более продолжительное облучение или снижение межфазной поверхности — может быть определено расчетным или экспериментальным путем для конкретных, условий струйного охлаждения. Следует отметить, что при [c.136]


    Несмотря на перечисленные выше недостатки, механическая обработка любого полиамида не связана с какими-либо трудностями как в отношении достижения необходимых допусков на размеры, так и в получении поверхности хорошего качества. При назначении допусков на размеры необходимо учитывать возможность возникновения в результате механической обработки остаточных напряжений в детали, медленный процесс их релаксации после проведения обработки, а также последующее изменение размеров в результате поглощения влаги и усадки. Для стаби- [c.210]

    Перспективным направлением, связанным с зондированием растущего монокристалла для выявления его реальной структуры, является способ анализа акустической эмиссии, возникающей в результате механических процессов (релаксация напряжений). Схема этого способа приведена на рис. 108 [112]. В контейнере 5 укрепляется затравка 4. При нагреве шихты [c.150]

    Механическая прочность пленок. Как показано ранее (стр. 01) по мере увеличения содержания в системе ПАВ в узком интервале концентраций устойчивость тонких жидких слоев значительно возрастает. Можно предполагать, что в той же самой области наступает изменение механических свойств пленок. Попытка оценить влияние на устойчивость механических свойств адсорбционного слоя, определяемых путем измерения поверхностной вязкости и прочности на межфазных границах больших размеров, не привела к положительному результату, поскольку измеряемые эффекты слишком малы и деформация под действием сдвиговых напряжений не соответствует элементарному акту процесса разрыва. Разрушению тонкого жидкого слоя всегда должно предшествовать появление более тонкой локальной области— слабого места, скорость залечивания которого меньше, чем скорость разрыва пленки. Для устойчивости решающее значение имеют физико-механические свойства, проявляющиеся при сжатии и растяжении адсорбционных слоев — поверхностная эластичность (модуль поверхностного сжатия) и поверхностная вязкость. Последняя величина, зависящая от скорости деформации, характеризует процесс релаксации молекул ПАВ в адсорбционном слое, а также диффузионный обмен, происходящий в пленке при изменении ее толщины под действием внешней нагрузки .  [c.112]

    В настоящее время известно большое число экспериментальных данных по изменению Тс полимера под влиянием поверхности твердого телг(. Эти данные получены различными методами (дилатометрическим, динамическим, по измерению механических свойств, теплоемкости, методами ЯМР, диэлектрической релаксации, радио-термолюминесценции и пр.). Так как каждый из этих методов имеет свои ограничения и позволяет выявить преимущественно какой-либо один тип молекулярных движений, то результаты, полученные различными методами, не всегда сопоставимы между собой. [c.89]

    Для полной характеристики релаксационного поведения полимерного материала необходимо провести многочисленные эксперименты по определению кривых релаксации напряжения в широком интервале температур и деформаций. Задача существенно упрощается при оценке механической работоспособности полимеров сканирующими методами, т. е. при проведении эксперимента в условиях непрерывно возрастающей температуры. Этот метод разработан [1] для линейного роста температуры во времени. В результате такого эксперимента охватывается широкий интервал температур, а полученные результаты позволяют количественно оценить механическую работоспособность полимеров во всем этом интервале. При этом под механической работоспособностью подразумевается способность твердого полимера (пластмассы) не разрушаться и размягчаться во всем возможном для него интервале температур, напряжений и деформаций. Подробно эти вопросы изложены в работе [2, с. 403—442]. [c.40]

    Оценку механических свойств клееных нетканых материалов можно дать в результате совместного рассмотрения кривых растяжения, термомеханических, ползучести и релаксации. [c.282]

    Вывод о корреляции совместимости полимеров с ОЭА и прочностных параметров полученных резин относится прежде всего к по-лифункциональпым олигомерам разветвленного строения и обусловлен следующими соображениями. Известно, что при блочной полимеризации ОЭА происходит образование весьма плотной сетки с перенапряженными (дефектными) участками. Возникновение микроскопических дефектов является одной из особенностей трехмерной полимеризации и связано с тем, что процессы релаксации механических напряжений при отверждении затруднены вследствие жесткой фиксации каждого звена в сетке с помощью химических связей, а не сил ван-дер-Ваальса, как в случае линейных полимеров. При структурировании СКН-26 полифункциональными ОЭА, хорошо с ним совместимыми, молекулы каучука оказывают пластифицирующее действие на жесткий отвержденный олигомер, в результате чего достигается высокая прочность таких систем. Для бутадиен-стироль-лого каучука, плохо совместимого с полярными олигоэфирами, раз- [c.250]

    Под действием электрического поля происходит ориентация сегментов и полярных групп макромолекул, что вызывает изменение структуры и свойств полимеров. Так, например, увеличение рентгеновской степени кристалличности полиамида наблюдается после обработки его в электрических полях напряженностью 50-500 кВ/см [57]. Показано, что изменения в ИК-спектрах ПЭТР после поляризации обусловлены появлением ориентированных групп С=0 [14], Перестройка структуры полимеров, происходящая при поляризации под воздействием электрических полей, обусловливает повышение прочностных и ухудшение деформаююнвых характеристик полимеров. Например, в поляризованных пленках из поликарбоната и ПЭТФ разрушающее напряжение при растяжении возрастает на 15-50%, а время релаксации механических напряжений - в несколько раз [14], Аналогичные результаты получены для пленок на основе полярных полимеров - полиамида и политрифторхлорэтилена [57], [c.64]

    Однако скорость возвращения упруго-деформированного тела в исходное состояние сильно возрастает с повышением температуры или при набухании. Поэтому при обычной температуре деформированный твердый материал может ирактически сохранять свою форму, но нри нагревании или набухании этот материал будет быстро принимать исходную форму. Это положение хорошо иллюстрируется в работе Г. И. Гуревича и П. П. Кобеко [1] на примере полистирола. Это же явление было прослежено В. А, Каргиным и Н. В. Михайловым [2] при исследовапии целлюлозных волокон. Ориентированные растяжением волокна, ие изменяющиеся при обычных условиях, при повышенной температуре и при набухании вновь сокращаются. Процесс деформации целлюлозы описывается так же, как и деформация, например каучука, отличаясь лишь периодом релаксации. Аналогичные результаты были получены П. В. Козловым [3]. И, наоборот, если исследовать механическое поведение каучука при попижепных температурах, то оно будет аналогичным поведению твердых полимеров при обычной температуре. [c.316]

    Гидрослюда—палыгорскит. Добавка 30% (19% по весу) палыгорскита к гидрослюде приводт (при сравнении с коагуляционной структурой последней) к увеличению модуля быстрой эластической деформации, условного статического предела текучести, эластичности и пластичности и к понижению модуля медленной эластической деформации, наибольшей пластической вязкости и периода истинной релаксации. В результате значительно возрастает прочность системы и увеличивается доля медленных эластических и пластических деформаций. Система переходит из третьего в четвертый структурно-механический тип (см. табл. 30, рис. 58). [c.125]

    Р. П. Гимаевым, автором и Р. К. Галикеевым изучалась прочность кубиков на сжатие при высоких температурах в специально сконструированной печи с внутренней стенкой из металлической трубы 2 (рис. 51). Предварительно было установлено, что ири больших скоростях нагрева кусков кокса (свыше 7°С/мин) в результате неравномерного их нагрева в массе кокса возникают большие напряжения, вызывающие его растрескивание и даже разрушение (рис. 52). Поэтому во всех опытах скорость нагрева кусков кокса не превышала 5°С/мин. Попеременный нагрев в интервале 500—1000°С и охлаждение кубика после каждого опыта показал, что при температурах выше 700 °С прочность кокса (метод толчения) возрастает, однако прочность кусков (метод раздавливания) монотонно падает. Это объясняется возникновением в массе кокса в процессе нагрева до 700 °С внутренних напряжений, которые полностью не успевают релаксироваться при охлаждении. Снятие этих напряжений при нагреве до температуры выше 700 °С в период, когда идут интенсивно процессы структурирования вещества кокса, является причиной возрастания механической прочности материала кокса с увеличением температуры. Исследование образцов коксов в горячем впде показало их значительно меньшую прочность на сжатие, чем холодных образцов, предварительно прокаленных при тех же температурах. Это объясняется тем, что в первом случае почти отсутствует релаксация внутренних напряжений и материал находится в весьма напряженном состоянии. [c.191]

    Позднее эта точка зрения была распространена и на металлы, которые не образуют интерметаллидных соединений, но для которых характерно изменение фаз йли образование сегрегаций легирующих элементов или примесей в вершине трещины в ходе пластической деформации вследствие градиента состава здесь образуются гальванические элементы. Варианты этой теории содержат предположение, что трещины образуются механически и что электрохимическое растворение необходимо только для периодического сдвига барьеров при росте трещины [25]. Но хрупкое разрушение пластичного металла вряд ли возможно в вершине трещины. Кроме того, было показано, что удаление раствора Fe la из трещины, образованной в напряженном монокристалле uaAu, сопровождается релаксацией напряжений в кристалле и —. .в результате —немедленным прекращением растрескивания, сменяющимся пластической деформацией [26]. Аналогичным образом, трещина, распространяющаяся в напряженной нержавеющей стали 18-8, погруженной в кипящий раствор Mg lj, останавли- [c.138]

    Представлялось целесообразным провести дальнейшие исследования, исключив влияние одного из факторов. Удобным оказалось исключение изменений условий деформирования полимерной матрицы путем выбора наполнителя, близкого по механическим свойствам к связующему. В качестве такого наполнителя был использован порошок той же отвержденной эпоксидной смолы ЭД-20, которая применялась как связующее. На рис. III. 34 приведены спектры времен релаксации образцов с разным. содержанием ЭД-20. (в объемных долях). Для сравнения там же приведена спектральная кривая образца, из которого был изготовлен наполнитель (эпоксидная смола, отвержденная в отсутствие наполнителя). При анализе результатов этого эксперимента обращает на себя внимание существенный сдвиг спектральных-кривых в сторону больших времен релаксации по сравнению со спектром смолы, отвержденной без наполнителя. Введение наполнителя приводит также и к изменению наклона спектра. Характерно, что сдвиг и расширение спектров в этом случае заметны больше чем для образцов с кварцевым наполнителем. Связано это с исключением фактора недефор-мируемости наполнителя, в результате чего влияние поверхности наполнителя на изменение свойств граничных слоев связующего, отверждаемого на этой поверхности, проявляется более четко. [c.142]

    Бесспорно, что большое число разрывов цепей в процессе механического воздействия [1] само по себе не служит ни доказательством, ни даже указанием на то, что релаксация макроскопического напряжения, деформирование и разрушение материала являются следствием разрыва таких цепей. Как отмечали Кауш и Бехт [2], полученное число разорванных цепей намного меньше (с учетом их потенциальной работоспособности) их числа, необходимого для объяснения уменьшения фиксируемого макроскопического напряжения. Как показано на рис. 7.4, релаксация напряжения в пределах ступени деформирования (0,65%) равна 60—100 МПа. Однако если полагать, что проходные сегменты пересекают только одну аморфную область, то изменение нагрузки, соответствующее работоспособности 0,7-10 цепных сегментов, разорванных на данной ступени деформирования, составляет 2,4 МПа. Оно будет равным 2,4 МПа, если проходные сегменты соединяют п подобных областей. Б этом и большинстве последующих расчетов будет использована сэндвич-модель волокнистой структуры, подобная показанной на рис. 7.5 (случай I). Очевидно, что в случае п = 1 величина релаксации макроскопического напряжения в 25—40 раз больше уменьшения накопленного молекулярного напряжения, рассчитанного исходя из числа экспериментально определенных актов разрыва цепей. Однако в данном случае также следует сказать, что подобное расхождение результатов расчетов само по себе не является ни доказательством, ни даже указанием на то, что релаксация макроскопического напряже- [c.228]

    На основе предположений о существовании широкого спектра Бремен корреляции удается объяснить эффекты, наблюдаемые методом ЯМР, а также получить хорошее соответствие между данными исследования механических и диэлектрических свойств и результатами измерения времен х и Т2- Факт наличия у ряда полимеров двух поперечных времен релаксации не получил покп удовлетворительного объяснения. Если для полиэтилена это можно объяснить наличием двух фаз в расплаве, то существование двух фаз при тех же температурах в некристаллизующемся полиизобутилене менее вероятно. [c.226]

    Формулы (627) и (627а) аналогичны формулам (350), (351) и (623),,(624) для механической и электрической релаксации в однородных изотропных телах, аналогичными являются и результаты [c.351]

    Можно предположить, что характер изменения плотности упаковки полимера при деформации зависит также от условий, в которых ведется ориентация. Если условия деформации неравновесного полимера благоприятствуют протеканию процессов с большим временем релаксации, то можно ожидать, что в результате вытяжки будет происходить повышение плотности упаковки полимера [50]. В противном случае ориентация вызывает понижение плотности упаковки, несмотря на выпрямление цепей, приводящее к возникновению структурной и механической анизотропии. Таким образом, характер изменения порядка в расположении молекул будет определяться соотношением скоростей деформации и релаксации. Релаксация будет снижать ориентацию сегментов макромолекул [57, 58]. Низкие скорости вытяжки создают более благоприятные условия для протекания процессов с болыпим временем [c.77]

    Нарушение работы аппаратуры может происходить в результате коррозионного износа (химическое или электрохимическое воздействие агрессивной среды на материал), эрозионного износа (истирание материала под действием сил трения и удара со стороны жидкой или содержащей твердые частицы рабочей среды), термического износа (снижение прочности и нарушение плотности элементов и соединений в результате воздействия высоких температур, высоких температурных напряжений, явлений ползучести, релаксации и нарушения стабильности структуры сталей), механического износа (пластические деформации и нарушение целостности деталей), а также в результате зафяз-нения рабочих поверхностей отложениями. [c.4]

    При переходе ог высоких к низким температурам (кривая /) сначала происходит механическое стеклование при Та (а—максимум потерь), зависящей от частоты, как и все другие температуры переходов Г,. Механическое стеклование происходит в структурно-жидком состоянии полимера, когда равновесная структура в ближнем порядке изменяется с понижением температуры. В результате изменяются физические свойства полимера и, в частности, скорость звука (участок D ). Точка D не -связана с каким-либо релаксационным переходом, а означает завершение интервала механического стеклования. Напротив, точка С означает р-механическую релаксацию и после температуры Гр при дальнейшем понижении температуры полимер, по-прежнему, находится в структурно-жидком состоянии вплоть до температуры структурного стеклования Гст, когда сегментальное движение замораживается. Ниже Гст (участок ВА) температурный ход скорости звука становится иным, более пологим и это объясняется тем, что полимер находится в структурно-твердом состоянии (неравновесном), которое обычно называют стеклообразным. При некоторой температуре Грст происходит теперь уже структурный р-переход, когда мелкомасштабные движения основной полимерной цепи замораживаются. Далее происходит замораживание подвижности различных боковых привесков. [c.235]

    По терминологии Михайлова [157] в полимерах возможны два вида релаксации дипольно-групповая и дипольно-сегмен-тальная. Первый из этих видов релаксации связан с мелкомасштабным движением диполей в главной цепи и боковых привесках (сразу отметим, что по классификации релаксационной спектрометрии это определение переходов включает как собственно р-переходы, так и у-переходы). На рис. X. 2 представлены зависимости как для р- так и для а-переходов. В полимерах а-релаксация связана с сегментальным движением, которое ответственно за структурное и механическое стеклование. Если охлаждение расплава полимера происходит достаточно медленно, чтобы успевала устанавливаться равновесная структура в ближнем порядке, а частоты воздействия электрических полей достаточно большие (обычно больше 10 " Гц), то сегментальная форма движения перестанет успевать следовать за изменением электрического поля раньше, чем произойдет структурное стеклование. Иными словами при температуре Та, > Гст тем большей, чем больше частота, будет наблюдаться электрическое стеклование, в результате которого полимер теряет свойства жидкого диэлектрика и приобретает свойства твердого. Этой температуре соответствует максимум диэлектри- [c.240]

    Как показывает опыт, механическое растягивание полимеров вызывает смещений максимума диполь-но-эластических потерь, не влияя на дипольно-ра-дикальные. Ориентация, имеющая место при этом, приводит к механическому стеклованию (с. 465), цепи из-за усиления межмолекулярного действия становятся более жесткими, и затрудняется движение сегментов. Возросшее в результате этих процессов время релаксации находит свое отражение в указанном смещении максимума дипольно-эластических потерь. Так как ди-польно-радикальные потери не связаны с сегментальным движением, ориентация не влияет на них (рис. 183). [c.567]

    При измерении механических характеристик пластмасс возникает ряд вопросов, связанных как с теоретическим анализом получаемых результатов, так и с методиками экспериментов по измерению релаксации напряжения, ползучести и долговременной прочности. В связи с этим в каждой главе проводится теоретический анализ влияния режимов испытаний на характер получаемых кривых релаксации напряжений л ползучести. В первом случае наиболее важно учип дать влияние скорости деформирования на ход кривых релаксации напряжения в условиях поддержания постоянной деформации, а во втором — влияние скорости нагружения на ход кривых ползучести в условиях поддержания постоянного напряжения. [c.9]

    Существенно, что после испаренич растворителя вулканизационная структура восстанавливается, а пленки, полученные из раствора, имеют такие же физико-механические свойства, как и исходные вулканизаты [67]. Вулканизационная структура при этом образуется в результате межмолекулярного взаимодействия полярных солевых групп. Физический характер этого взаимодействия подтверждается тем, что вулканизацию карбоксилатных каучуков можно провести и гидроксидами одновалентных металлов [61 68]. Соединение групп —СООНа и —СООЫ в устойчивые при комнатной температуре агрегаты было показано экспериментально при исследовании температурной зависимости динамических свойств вулканизатов [4]. Кроме того, в вулканизационных структурах металлооксидных вулканизатов карбоксилатных каучуков обнаружено большое число слабых связей. Об этом свидетельствует (помимо отмеченной термолабильности) быстрое снижение прочности вулканизатов при повышении температуры, высокая скорость релаксации напряжения, течение вулканизатов под нагрузкой при растяжении и сжатии, быстрое накопление остаточных деформаций [24, с. 15, 62, 69]. [c.160]

    Вместе с тем следует отметить, что в отличие от систем, наполненных минеральными наполнителями, для полимерных наполнителей роль изменения структуры обоих компонентов в граничных или переходных слоях в механизме упрочнения исследована очень ца.ло, хотя очевидно, что их вклад в свойства системы должен быть очень существенным. Среди функций, выполняемых переходными слоями, можно назвать и увеличение гетерогенности системы. Кулезнев считает [377], что для формирования необходимого комплекса свойств композиции требуется достижение оптимальной сте-цени ее неоднородности, так как известно, что механическая неод- ородность приводит к улучшению свойств многих материалов, в том числе и йеполимернЫх. В частности, Кулезнев допускает возможность релаксации перенапряжений в переходном слое, энер-01я когезии которого понижена. В результате трещина многократно меняет, направление роста. [c.280]

    Описанные изменения свойств полимера на поверхности в результате взаимодействия с ней имеют существенное значение для понимания механизма усиления полимеров, в частности стеклянным волокном, где важную роль играет соотношение модулей упругости наполнителя и отвержденного связующего. Эффекты упрочнения обусловлены- не только высокими механическими показателями армирующего материала, не только изменением условий перераспределения напряжений в системе при деформации, но и изменением микрогетерогенности полимеров в тонких слоях на поверхности наполнителя вследствие ограничения их гибкости и из менения характера упаковки. Отсюда ясно что влияние прочности адгезионной связи наполнйтеля и полимера сказывается не только на условиях перераспределения напряжений в системе, но и на изменении свойств самого полимера. Можно считать, что адгезия, зависящая от свойств полимера, в свою очередь, оказывает влияние на его свойства. Увеличение прочности адгезионной связи приводит к более эффективному повышению жесткости цепей и способствует возрастанию рыхлости упаковки молекул в поверхностном слое. Более рыхлая упаковка молекул способствует релаксации напряжений при деформации. Это может иметь важное значение как фактор, изменяющий условия развития трещин в образце при его [c.281]

    Анизотропия пленки, возникающая вследствие адгезии к подложке, иа которой производится отлив, и в результате натяження в процессе формования, приводит к нежелательным усадкам ее при эксплуатации. В то же время сочетание одноосной вытяжки с последующей релаксацией внутренних напряжений приводит к ориентационному уирочпению, что имеет значение для пленок, которые в процессе эксплуатации подвергаются одноосным механическим воздействиям (наиример, кино-иленки). [c.316]


Смотреть страницы где упоминается термин Релаксация механическая результаты: [c.44]    [c.397]    [c.397]    [c.40]    [c.152]    [c.191]    [c.137]    [c.427]    [c.82]    [c.256]    [c.139]   
Проблемы физики и химии твердого состояния органических соединений (1968) -- [ c.341 , c.396 , c.411 ]




ПОИСК





Смотрите так же термины и статьи:

Релаксация механическая



© 2025 chem21.info Реклама на сайте