Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Представление о зонной теории. Металлы, полупроводники, изоляторы

    Свойства металлов и ковалентных каркасных кристаллов можно интерпретировать в рамках представлений о делокализованных молекулярных орбиталях, рассматривая весь исследуемый объем вещества как одну гигантскую молекулу . Основанная на таких представлениях зонная теория позволяет объяснить многие наблюдаемые свойства проводников, полупроводников и диэлектриков (изоляторов). [c.640]


    Остановимся теперь на том, как зонная теория определяет различия между изоляторами, полупроводниками и металлами. Будем считать структуру полос квазинепрерывной и введем функцию с (е) — энергетическую плотность состояний [с (е) с1е — число квантовых состояний в интервале значений энергии электрона от е до е + с1г]. Для электронов в кристалле эта функция имеет вид, схематически представленный на рис. 26, а. На рис. 26, б для сопоставления дана кривая [c.186]

    Как известно, зонная теория твердых тел в существующем виде не может объяснить электропроводность и другие свойства твердых растворов окислов металлов переменной валентности и щелочных металлов. Достаточно сказать, что, согласно зонной теории, окись никеля и другие окислы переходных металлов (с вакантными электронами на Зй-орбитах) должны быть хорошими полупроводниками. В действительности же они являются изоляторами. Причина неприменимости зонной теории заключается в том, что основным положением этой теории является представление о коллективности электронов и, следовательно, учет взаимодействия дальнего порядка в кристалле. Наиболее правильное толкование электропроводности указанных полупроводников дали Фервей и де Бур [14, 15]. Согласно их представлениям, в процессе образования твердых растворов указанных окислов с окисью лития ионы лития внедряются в кристаллическую решетку окислов типа ТО (где Т — металл переменной валентности), занимая место катионов. Это приводит к нарушению электронейтральности кристалла благодаря этому в решетку одновременно внедряется также кислород, который отнимает электрон у двухвалентного иона. В результате появляются трехвалентные ионы, Т +, так называемые дырки . Реакцию образования твердого раствора можно представить в следующем виде  [c.324]

    Изучение электрических свойств молекулярных твердых веществ долгое время было пасынком физики твердого тела. До разработки квантовомеханической теории физики и химики изучали макроскопические свойства — такие, как твердость, сжимаемость и проводимость — самых различных материалов. Кристаллические типы не были еще достаточно четко дифференцированы, а поскольку представления о твердом теле были весьма ограниченными, не были выбраны какие-либо вещества в качестве специфических моделей для изучения того или иного из этих свойств. После появления зонной теории твердого тела наибольшее значение приобрели микроскопические свойства веществ, однако молекулярные твердые тела остались в стороне от рассмотрения. Одной из причин создавшегося положения могло явиться то, что не нашлось вещества, которое подошло бы в качестве простой теоретической или экспериментальной модели. Для металлов моделью мог служить литий или натрий, для ионных кристаллов — хлористый натрий, для полупроводников — германий и кремний. Простейшие же твердые вещества молекулярного характера, например монокристаллы водорода, гелия, аргона или неона, малодоступны и их трудно изучать. Даже сера и иод — первые из элементов периодической системы, образующие молекулярные кристаллы при комнатной температуре,— не привлекли серьезного внимания, так как по своей природе они довольно сложны. Другая очень веская причина относительного пренебрежения молекулярными твердыми веществами кроется в трудности практического применения этих веществ. Чрезвычайная мягкость, малая прочность на разрыв и низкая электропроводность делают их мало интересными для инженеров. Положение изменилось с появлением полимеров, но они нашли применение в электротехнике лишь как изоляторы, и поэтому измерения, описанные в литературе, носили прикладной характер и касались определения в основном изоляционных свойств, а не проводимости. [c.9]


    Представление о зонной теории. Металлы, полупроводники, изоляторы. Валентные отношения в твердом теле с координационной структурой определяются иными законами, чем в молекулах. Само представление о валентности как о способности атома присоединять определенное количество партнеров в применении к твердому телу теряет смысл, так как здесь реализуется возможность коллективного взаимодействия. Так, валентности натрия и хлора в молекуле Na l равны единице, а в твердом состоянии каждый атом натрия окружен шестью атомами хлора, и наоборот. [c.307]

    Некоторое представление о механизме переноса тока через полупроводники можно получить на основе зонной теории тверды, тел. Эта теория позволяет установить также различие в природе проводимости металлов, изоляторов и полупроводннков. [c.135]


Смотреть страницы где упоминается термин Представление о зонной теории. Металлы, полупроводники, изоляторы: [c.301]    [c.414]   
Смотреть главы в:

Общая химия -> Представление о зонной теории. Металлы, полупроводники, изоляторы

Общая и неорганическая химия 1997 -> Представление о зонной теории. Металлы, полупроводники, изоляторы

Общая и неорганическая химия -> Представление о зонной теории. Металлы, полупроводники, изоляторы




ПОИСК





Смотрите так же термины и статьи:

Зона металлов

Зонная теория

Изоляторы

Изоляторы металлов

Изоляторы полупроводников

Металлы зонная теория

Металлы полупроводников

Полупроводники

Полупроводники полупроводники

Полупроводники теория зонная

Теория полупроводников



© 2025 chem21.info Реклама на сайте