Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы каркасные

    Трехмерные каркасные силикаты, в которых все четыре атома кислорода в кремнекислородном тетраэдре обобществлены с другими ионами типичны для кварца (810 з) (рис. 14-34). В кристалле кварца [c.637]

    Это сходство с металлами указывает, что валентные электроны в германии не связаны с атомами столь прочно, как можно было бы ожидать для настоящего ковалентного каркасного кристалла. Мыщьяк, сурьма и селен существуют в одних модификациях в виде молекулярных кристаллов, а в других модификациях - в виде металлических кристаллов, хотя атомы в их металлических структурах имеют относительно низкие координационные числа. Известно, что теллур кристаллизуется в металлическую структуру, но довольно вероятно, что он может также существовать в виде молекулярного кристалла. Положение астата в периодической таблице заставляет предположить наличие у него промежуточных свойств, однако этот элемент еще не исследован подробно. [c.607]


    Элементарной структурной ячейкой силикатов является кремнекислородный тетраэдр такие тетраэдры могут образовывать циклические, цепные, листовые и трехмерные каркасные структуры. Часть атомов кремния способна замещаться алюминием, но при этом компенсация заряда требует введения дополнительных катионов, что приводит к усилению электростатического вклада в химическую связь кристалла. На примере силикатов иллюстрируются четыре из пяти типов связи, обсуждавшихся в данной главе ковалентная связь между атомами кремния и кислородом в тетраэдрах, вандерваальсовы силы между силикатными листами в тальке, ионное притяжение между заряженными листами и цепочками, а также водородные связи между молекулами воды и силикатными атомами кислорода в глинах. Если включить в этот перечень еще никелевые катализаторы на глиняном носителе, то мы охватим и пятый тип химической связи (металлический). [c.640]

    Кристаллы элементарных веществ. Ковалентные каркасные и металлические кристаллы. [c.600]

    Кристаллы неметаллических элементов с каркасной структурой, подобные углероду или кремнию, обладают свойствами диэлектриков (изоляторов), т.е. не проводят электрический ток. Применение теории молекулярных орбиталей к обсуждению химической связи в неметаллических каркасных кристаллах сталкивается со значительными трудностями. Достаточно сказать, что в ковалентных каркасных кристаллах обычно удается вести подсчет валентных электронов вокруг каждого атома, подобно тому как это делается при составлении льюисовых структур, и оказывается, что при этом выполняется правило октета. Это объясняется тем, что атомы в неметаллических каркасных кристаллах обычно имеют по крайней мере столько валентных электронов, сколько у них есть валентных орбиталей. Следовательно, в таких кристаллах предпочтительны низкие координационные числа, и между каждым атомом и его ближайшими соседями могут образовываться простые двухэлектронные связи. Низкие координационные числа являются причиной того, что потенциальная энергия электрона внутри таких кристаллов не постоянна она значительно понижается в межъядерных областях, и поэтому электроны не могут свободно перемещаться по кристаллу, подобно тому как это происходит в металлах. [c.629]

    Ковалентные каркасные кристаллы. Диэлектрики (изоляторы). Запрещенная зона, или межзонная щель. Полупроводники. [c.601]

    Чем объясняется высокая твердость неметаллических ковалентных каркасных кристаллов  [c.640]

    Неметаллические кристаллы с каркасными кова- [c.607]

    Ковалентные каркасные кристаллы 629 [c.652]

    КОВАЛЕНТНЫЕ КАРКАСНЫЕ КРИСТАЛЛЫ [c.629]

    Низкотемпературные свойства. При охлаждении топлив парафиновые углеводороды нормального строения выпадают в виде кристаллов различной формы. Топливо мутнеет, возникает опасность забивки фильтров кристаллами углеводородов. Температура, при которой возникает это явление, получила название температуры помутнения или начала кристаллизации. При дальнейшем снижении температуры выделившиеся кристаллы образуют сетчатые каркасные структуры, топливо теряет подвижность или, как принято говорить, застывает. Эту температуру называют температурой застывания. По температурам помутнения и застывания топлива судят о возможностях его использования при низких [c.18]


    Молекулярные кристаллы Ковалентные каркасные кристаллы Me таллинские кристаллы Ионные кристаллы [c.639]

    Свойства металлов и ковалентных каркасных кристаллов можно интерпретировать в рамках представлений о делокализованных молекулярных орбиталях, рассматривая весь исследуемый объем вещества как одну гигантскую молекулу . Основанная на таких представлениях зонная теория позволяет объяснить многие наблюдаемые свойства проводников, полупроводников и диэлектриков (изоляторов). [c.640]

    В зависимости от природы растворителя полярные группы молекулы присадки могут быть направлены или внутрь клубка полимерной цепочки, а алкильные радикалы — наружу, или наоборот. В первом случае клубки молекулы присадки (растворенной в н-гексане или н-ок-тане) как бы ощетиниваются углеводородными радикалами. Это повышает способность молекулы встраиваться в цепи образующейся твердой фазы, т. е. участвовать в сокристаллизации. Депрессорная активность присадки в этом случае велика. Когда алкильные радикалы молекул присадки расположены внутри ее полимерной цепочки, эффективность резко снижается. Показано также, что активность полиметакрилата Д связана с поворотной изомерией его молекул и молекул нормальных парафинов. Только те молекулы присадки, алкильные радикалы которых имеют транс-конфигурацию, могут встраиваться ( вмерзать ) в кристаллы парафина, состоящие также из гранс-изомеров. Полярные группы молекул депрессора в этом случае остаются на поверхности кристаллов и препятствуют их срастанию с образованием каркасной структуры. Отсюда автор делает вывод, что активность депрессорной присадки пропорциональна концентрации ее молекул с алкильными радикалами в форме транс-изомеров.  [c.229]

    Почему углерод и кремний образуют каркасные кристаллы  [c.640]

    Кристалл 2п8 может рассматриваться как ковалентная каркасная структура, в которой каждый атом 2п связан с четырьмя атомами 5, а каждый атом 5 связан с четырьмя атомами 2п. Сульфид цинка обнаруживает свойства диэлектрика, хотя и не в такой мере, как алмаз. Вместе с тем его можно рассматривать как ионный кристалл, состоящий из ионов 2п" и 8" с координационным числом 4 каждый. Наконец, его можно рассматривать и как металлическую структуру (гексагональную плотноупакованную), построенную из анионов 8"", в которой половина тетраэдрических дырок (вакансий) занята ионами 7п"  [c.527]

    Зонная структура энергетического спектра, как мы видели выше, отражает ту особенность природы атомных кристаллов (металлов, полупроводников и изоляторов), что в них существует непрерывный трехмерный каркас межатомных связей и свойственное кристаллическому веществу периодическое поле. Электронный энергетический спектр молекулярных кристаллов, построенных из отдельных нульмерных молекул, соединенных ван-дер-ваальсовскими связями, не имеет обычной зонной структуры, а представляет собой совокупность до некоторой степени искаженных в результате слабого обменного взаимодействия молекул молекулярных энергетических спектров, состоящих из дискретных энергетических уровней. Кристаллы цепочечной, сетчатой и каркасной структуры, в том числе разнообразные соединения включения, мы рассматриваем как разновидности молекулярных кристаллов, построенных, соответственно, из одно-, двух- и трехмерных молекул или из их комбинаций. Их энергетические спект- [c.118]

    Вторую большую группу составляют силикатные сорбенты. В их число входит силикагель, получаемый высушиванием геля кремниевой кислоты. Его скелет состоит из связанных друг с другом очень мелких шарообразных частиц 5102. При определенных условиях синтезируют также алюмосиликаты особой каркасной структуры, в решетках кристаллов которых имеются полости. Такие алюмосиликаты называются цеолитами. Поры в цеолитах имеют размеры небольших молекул (около 1 нм). [c.68]

    Существует несколько вариантов классификации цеолитов, предложенных Смитом [30], Фишером и Мейером [31, 32] и Бреком [33]. Вначале при классификации цеолитов исходили из пх морфологических свойств (см. гл. 1, разд. Ж). В дайной книге используется классификация, основанная на топологии каркаса цеолитов с известной структурой. Все цеолиты разделены на 7 групп, в каждую из которых входят структуры с одинаковым характером сочленения тетраэдров (А1, 31)04 в структурные элементы. Распределение 31—А1 при этом ие принимается во внимание. Примером двух простейших структурных элементов служат кольца из 4 и б тетраэдров, характерные для многих каркасных алюмосиликатов. Такие элементы структуры Мейер [32] назвал вторичными структурными единицами. (Первичными единицами, конечно, являются 3104 и АЮ4 тетраэдры.) Некоторые из этих единиц, вероятно, целиком включаются в кристалл в процессе его роста. Вторичные структурные единицы, предложенные Мейером (рис. 2.21, а), представляют собой характерные конфигурации из тетраэдров. Из таких многогранников, как, например, усеченный октаэдр, можно составить каркасы некоторых цеолитов. Несколько таких многогранников, входящих в цеолитные структуры, представлены на рис. 2.21, б. Эти структурные единицы похожи на фонарики с полостями в нут- [c.54]


    Скелет цеолитов имеет каркасную структуру с относительно большими сотообразными полостями, которые сообщаются окнами малых размеров, так что все полости кристалла оказываются свя-запнымп между собой. От природы и состава цеолита зависит его форма п размер полостей, число которых огромно (например, в 1 г шабазнта З-Ю полостей). Поперечное сечение нолости шабазита составляет максимум 11,4 А, входные окна диаметром 4,9 А. Удельная поверхность каждой полости 750 м /г. Полости составляют около половины объема всего кристалла, иначе говоря, в кристалле шабазита одна половина объема приходится на долю атомов кремния, [c.98]

    Ковалентный каркасный кристалл сублимирует при 178 С. Образует димер АЬС1, [c.453]

    Применение топлив в условиях низких температур может осложняться по двум причинам. Во-первых, растворимость воды в топливах уменьшается при понижении температуры, и избыток ее замерзает в виде кристаллов. Частички льда могут вызывать обледенение карбюратора, забивать топливные фильтры и т. п. Во-вторых, в среднедистиллятных и тяжелых топл ивах содержатся парафиновые углеводороды, которые при низких температурах выпадают в виде твердых кристаллов. Эти кристаллы могут сращиваться в каркасные структуры, и то>пли1ю теряет подвижность. [c.295]

    Алмаз и графит называют ковалентными каркасными кристаллами, потому что они состоят из бесконечных цепочек атомов, связанных друг с другом ковалентными связями, и в них нельзя различить дискретных молекул. В сущности, любой кусок ковалентного каркасного кристалла можно рассматривать как гигантскую молекулу, атомы которой связаны между собой ковалентными связями. Каркасные ковалентные кристаллы, как правило, плохие проводники тепла и электрического тока. Сильные ковалентные связи между соседними атомами, пронизывающие, как каркас, всю структуру кристалла, придают таким твердым веществам большую прочность и обусловливают высокую температуру плавления. Алмаз сублимирует (не плавится, а сразу возгоняется в паровую фазу) при температурах выше 3500""С. Некоторые из самых твердых известных нам веществ относятся к ковалентым каркасным кристаллам. [c.604]

    В периодической таблице, показанной на рис. 14-8, кристаллы элементарных веществ подразделяются на металлические, ковалентные каркасные и молекулярные. В табл. 14-1 устанавливается зависимость между координационным числом атомов в кристалле и структурой элементарных твердых веществ. Большинство элементов кристаллизуются с образованием какой-либо металлической структуры, в которой каждый атом имеет высокое координационное число. К металлам отнесены и такие элементы, как олово и висмут, кристаллизующиеся в структуры со сравнительно низким атомным координационным числом, но все же обладающие ярко выраженными металлическими свойствами. Светлоокрашенная область периодической таблицы включает элементы со свойствами, промежуточными между металлами и неметаллами. Хотя германий кристаллизуется в алмазоподобную структуру, в которой координационное число каждого атома равно только 4, по некоторым из своих свойстг он напоминает металлы. [c.605]

    В периодической системе нет резкой границы между элементами с металлической структурой и элементами с ковалентной каркасной структурой (рис. 14-8). Это видно из того, что кристаллы некоторых элементов обладают свойствами, промежуточными между проводниками и изоляторами. Кремний, германий и а-модификация олова (серое олово) обладают кристаллической структурой алмаза. Однако межзонная щель между заполненной и свободной зонами в этих кристаллах намного меньше, чем для углерода. Так, ширина щели для кремния составляет всего 105 кДж моль (Как мы уже знаем, для углерода она равна 502 кДж моль .) Для германия ширина межзонной щели еще меньше, 59кДж моль а для серого олова она лишь 7,5 кДж моль Ч Металлоиды кремний и германий называются полупроводниками. [c.631]

    Твердый диоксид углерода обнаруживает свойства молекулярного кристалла (он легко сжимается и сублимирует при 195 К), а твердый диоксид кремния (кварц, рис. 14-34) представляет собой неметаллический каркасный ковалентный кристалл (с высокой твердостью и температурой плавления 1883 К). Объясните это различие свойств двух оксидов, учитывая характер а- и тс-связывания в молекулах СО и SiOj. [c.642]

    При переходе вещества в твердое состояние молекулы независимо от конфигурации их остова и размеров могут служить нульмерными структурными единицами в молекулярных кристаллах, включая кристаллы соединений включения, обладающих структурой островного, цепочечного, слоистого и каркасного типа. Как мы уже видели, молекулы трехмерного строения, вроде Р458, неоцен-тана С (СНз) 4 или адамантана — симметричного трициклодекана С10Н16, в строении соответствующих молекулярных кристаллов играют роль точечных, нульмерных структурных единиц. Длинные цепочечные молекулы, например углеводорода —СшНза или полиэтилена, в соответствующих молекулярных кристаллах обычно складываются во вторичные структурные единицы, такие как слои в структуре кристаллов нормальных парафинов.  [c.90]

    Мы видим, что аморфные вещества не являются разупорядо-ченными кристаллическими веществами. И, таким образом, кристаллическая модель не может отражать природу аморфных веществ, так же как кристаллическая решетка не может содержать никакой информации о структуре аморфных веществ. Кристаллическая модель твердого вещества не отражает существования направленной составляющей связи, соединяющей структурные единицы твердого вещества. Между тем давно известно, что природа кристаллов определяется в конечном счете именно этим фактором. В самом деле, тип кристаллической структуры определяется характером межатомной связи и кристаллические структуры издавна классифицируются по типу связи ковалентной, водородной или ионной, металлической, молекулярной — ван-дер-ваальсовской. При этом различают координационные, каркасные, слоистые, цепочные и островные структуры. [c.162]

    Более поздние исследования структуры подобных соединений показали, что они представляют собой особый класс соединений — так называемые соединения включения. Такие соединения образуются при внедрении молекул и атомов в полости цепочечного, слоистого или каркасного кристалла, образованного вторым компонентом. Первые молекулы в соединениях включения называются гостями , вторые — хозяевами . В каркасных структурах, образованных молекулами-жхозяевами , возникают полости, в которых заключены молекулы- гости . Соединения включения (аддукты) с каркасным клеточным скелетом получили название клатратов. Клатратные соединения не следует рассматривать как комплексы, поскольку они образованы за счет ван-дер-ваальсова, а не валентного взаимодействия. Тем не менее их существование уже не позволяет отнести Аг, Кг, Хе (и радон) к инертным газам, так как они все же проявляют определенную склонность к взаимодействию. [c.392]

    На рис. 5 для сравнения приведены элементарные ячейки молекулярных структур иода (а) и диоксида углерода (б). Их важнейшей особенностью в отличие от предыдущих типов кристаллов является то, что в узлах кристаллической решетки находятся не атомы, а молекулы. При этом расстояния между атомами в молекуле меньше, чем межмолекулярные расстояния в кристалле. В них атомы связаны в молекулы прочными ковалентными связями, а между молекулами действуют слабые силы Ван-дер-Ваальса (см. 1 гл. V). Это значит, что структуры иода и диоксида углерода являются гетеродесмичными. К рассмотренным выше так называемым островным молекулярным структурам (Тг и СО2) относится абсолютное большинство органических соединений. Однако некоторые неорганические вещества, не имеющие молекулярной структуры (цепочечные, слоистые, каркасные), также гетеродесмичны, так как внутри цепей, слоев и каркасов межатомные связи ковалентные, а между цепями, слоями и каркасами функционируют силы Ван-дер-Ваальса. [c.15]

    Для строения галогенидов металлов справедливы два обобщающих положения. Во-первых, фториды отличаются по структуре от других галогенидов данного металла, за исключением случаев молекулярных галогенидов (например, кристаллические ЗЬРз и 5ЬС1з имеют молекулярное строение) и галогенидов щелочных металлов, образующих кристаллы с преимущественно ионным типом связи. Очень часто фторид металла имеет трехмерную каркасную структуру, тогда как хлорид, бромид и йодид образуют кристаллы, состоящие из слоев, а иногда и цепей. (Исключением из этого правила среди галогенидов МХз—МХб являются в основном фториды см. табл. 9.9). Во- зторых, многие фториды изоструктурны оксидам той же сте- [c.85]

    Ультрамарины. В последнюю из рассматриваемых групп каркасных силикатов входят вещества, называемые ультрамарииами. Это окрашенные силикаты, производимые промышленностью и используемые в качестве красящих пигментов. К этому же типу относится ляпис-лазурь (лазурит) весьма сходргую структуру имеют и некоторые неокрашенные минералы, например содалит. Мы будем для простоты всю эту группу силикатов обозначать термином ультрамарины . Подобно другим каркасным силикатам, их структуры основаны на каркасах (5 , А1)02 с положительными ионами, находящимися в пустотах. Характерным признаком кристаллов этой группы является присутствие в структуре отрицательных ионов, например С1 , 504 - или 52-Подобно полевым шпатам и в отличие от цеолитов ультрама-рины не содержат воды. Ниже приведены формулы характерных представителей этой группы  [c.160]

    Эрионит обычно образует кристаллы волокнистой формы. Однако в от.чичие от других волокнистых цеолитов после дегидратации он имеет очень стабильную каркасную структуру. Образцы эрионита, которые длительное время выдерживали в парах воды при 375 °С, практически не меняли свою адсорбционную емкость, что указывает на большую стабильность структуры. [c.87]

    Цеолиты X, Y и фожазит имеют топологически одинаковый алюмосиликатный каркас, но являются самостоятельными цеолитами с характерными различиями. Элементарная ячейка этого каркаса представляет собой куб с реброи около 25 А, содержаш,нй 192 тетраэдра (Si, А1)04. Очень стабильная и жесткая каркасная структура имеет самый большой из всех известных цеолитов свободный объем. который в дегидратированных кристаллах достигает почти 50 об. %. [c.99]

    Структурные характеристики цеолитов группы 5 установлены 45 лет назад Полингом [25] и Тейлором [62]. Однако подробное изучение структуры с определением положения катионов и молекул воды для большинства членов этой группы не проведено до сих пор. Цеолиты данной группы называют волокнистыми такая морфология кристаллов объясняется тем, что их каркасные структуры образованы длинными, соедипеппыми между собой цепями тетраэдров. Каждая цепь состоит из соединенных между собой структурных единиц по 5 тетраэдров, как показано па рис. 2.67, а. [c.125]


Смотреть страницы где упоминается термин Кристаллы каркасные: [c.80]    [c.111]    [c.31]    [c.485]    [c.287]    [c.532]    [c.86]    [c.284]    [c.335]    [c.156]    [c.156]    [c.316]    [c.11]    [c.110]    [c.22]    [c.28]   
Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.408 ]

Неорганическая химия Изд2 (2004) -- [ c.186 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие безводных солей и безводных каркасных кристаллов металл-алюмосиликатов

Каркасность



© 2025 chem21.info Реклама на сайте