Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Математическое описание процессов в гидроприводе с дроссельным регулированием

    Задачи динамики гидро- и пневмосистем состоят в математическом описании процессов в этих системах, исследовании устойчивости и качества регулирования систем, синтезе корректирующих устройств, обеспечивающих оптимальные или заданные характеристики систем. Приведенные задачи являются общими для любых систем автоматического управления и регулирования, но в динамике гидро- и пневмосистем имеются особенности, обусловленные взаимодействием гидравлических и пневматических элементов, а также наличием движения рабочей среды (жидкости или газа) по трубопроводам, щелям и каналам с местными сопротивлениями. Кроме процессов, возникающих при выполнении системами запланированных операций в гидро- и пневмосистемах, имеют место колебания давлений, расходов, отдельных деталей вследствие сжимаемости рабочей среды, воздействия рабочей среды на регулирующие устройства, утечек по зазорам и других причин. Сочетание всех этих явлений приводит к сложным нестационарным гидромеханическим процессам, которые необходимо учитывать при проектироБании и создании гидро- или пневмосистем. Следует напомнить о том, что понятия система , гидро-или пневмосистема относятся не только к комплексам взаимосвязанных устройств, но могут быть применены и к устройствам, представляющим собой соединения более простых элементов. Именно с позиций такого системного подхода рассматриваются ниже гидро- и пневмосистемы, в число которых включены гидромеханические и пневмомеханические приводы с дроссельным регулированием, электрогидравлические и электропневматические следящие приводы с дроссельным регулированием, гидроприводы с объемным регулированием, гидро- и пневмосистемы с автоматическими регуляторами. [c.238]


    Шаговые гидроприводы отличаются быстротечным и неустановившимся режимом движения выходного звена, поэтому при их проектировании обязателен динамический расчет с учетом основных нелинейных факторов. В результате расчета переходного процесса при отработке шага можно получить необходимую информацию о быстродействии и колебательности проектируемого гидропривода. Большинство важных для шагового гидропривода нелинейных факторов имеется и в гидроприводах других типов. Они подробно рассмотрены в гл. 2 при математическом описании двухпозиционных приводов. Принятые в параграфах 2.7—2.9 методы и формы описания нелинейных факторов использованы в параграфе 3. 5 для следящих приводов с дроссельным регулированием. Для динамического расчета двухпозиционных и следящих гидро- и пневмоприводов разработана единая методика, изложенная в параграфе 2.10. [c.350]

    Последующее математическое описание процессов и расчет промежуточных и конечных величин аналогичны приведенным в параграфе 3.5 для следящего гидропривода с дроссельным регулированием. Перепадные функции и 0, эквивалентных дросселей определяются по формулам (3.69)—(3.71), коэффициенты Р объемной деформации рабочей среды — по (3.74) и (3.75), а внешние нагрузки и — по (3.77)—(3.79). В соответствии с принятой методикой внутриинтервальной линеаризации нелинейных функций (см. п. 2.8) величины а , 0 , и Я нужно рассчитывать в каждом временнбм интервале дважды при начальных и прогнозируемых значениях основных переменных величин. За начальные значения переменных (0), р (0), Уд (0) и 1/д (0) в данном интервале времени принимают конечные значения переменных в предыдущем временнбм интервале. Прогнозируемые величины р1 (А), р (А), Од (А) и /д (А) находят по зависимостям (3.64). Коэффициенты линеаризации рассчитывают по [c.355]


Смотреть главы в:

Динамика и регулирование гидро- и пневмосистем -> Математическое описание процессов в гидроприводе с дроссельным регулированием




ПОИСК





Смотрите так же термины и статьи:

Гидропривод с Дроссельным регулированием

Математическое описание

Описание процессов в гидроприводе

Процесс математическое описание

Процесс регулирование

Регулирование дроссельное

Шаг гидропривода



© 2025 chem21.info Реклама на сайте