Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическое электрохимическое поведение меди

    I. Химическое и электрохимическое поведение меди [c.238]

    Гл. 3. Медь. Химическое и электрохимическое поведение меди [c.240]

    Исследование влияния деформации на электрохимические характеристики меди в потенциодинамическом режиме показало, что для поведения меди характерны те же общие закономерности, которые отличают поведение рассмотренных выше металлов деформация сдвигает участки, соответствующие области активного растворения, параллельным переносом в сторону отрицательных потенциалов, а ток пассивации — в сторону увеличения плотности в области максимальных деформаций имеет место возврат, что связано с уменьшением химических потенциалов атомов металла, а следовательно, уменьшением механохимического эффекта. [c.91]


    При растворении анодов, которые являются многокомпонентными сплавами, поведение металлов-примесей в зависимости от их электрохимической активности и химических свойств их соединений различно. Такие металлы, как цинк, железо, никель, кобальт, равновесные потенциалы которых намного отрицательнее равновесного потенциала меди, при условиях электролиза переходят в раствор, но не осаждаются на катоде. Накопление солей этих металлов в электролите, однако, при- [c.122]

    Важнейшим, а в ряде случаев и единственным промышленным способом получения и рафинирования многих металлов является гидроэлектрометаллургия. Электролизом водных растворов получают (или очищают) такие важные металлы, как медь, никель, цинк, марганец, хром и многие другие. Разработка технологических процессов сутце-ственно усложняется тем, что в исходном продукте (металле или его рудах) всегда присутствуют значительные количества самых разнообразных примесей. Технология гидроэлектрометаллургического производства строится таким образом, чтобы совокупностью химических операций и подбором электрохимических параметров процесса предотвратить попадание примесей в получаемый металл и вместе с телг с наименьшими потерями собрать все ценные примеси, стоимость которых в некоторых случаях превосходит стоимость основного металла. Наряду с этим, как и во всяком промышленном электролизе, требуется обеспечить высокую производительность процесса и по возможности низкий расход электроэнергии и вспомогательных материалов. Из изложенного ясно, что разработка электрометаллургической технологии требует весьма тщательного изучения электрохимического поведения сложных систем. Большой вклад в развитие этих производств внесли Р. И. Агладзе, Ю. В. Баймаков, А. А. Булах, О. А. Есин, М. Т. Козловский, А. И. Левин, А. Л. Ротинян, В. В. Стендер, Н. П. Федотьев, В. Л. Хейфец, Д. М. Чижиков и многие другие исследователи. [c.172]

    Представленный ряд напряжений позволяет судить о химическом и электрохимическом поведении металлов. Каждый из указанных металлов вытесняет из раствора ионы любого другого металла, стоящего в ряду справа от него. Например, цинк, погруженный в раствор Си504, покрывается металлической медью, причем эквивалентное количество цинка переходит в раствор  [c.150]

    Коррозионным, электрохимическим и физическим исследованиям сплавов Си — N1 посвящено много работ в связи с изучением природы пассивного состояния металлов [1] и границ химической стойкости твердых растворов [2, 3]. Установлено, что сплавы, содержащие более 60 ат. % меди, теряют свойственную никелю способность пассивироваться и в ряде коррозионных сред ведут себя подобно меди.. Область медноникелевых сплавов, в которых проявляется пассивность, приблизительно совпадает с областью существования свободных электронных вакансий в й-уровнях никеля, взаимодействие которыми, по мнению ряда авторов [1], обусловливает прочную хемосорбционную связь металла с кислородом и тем самым его пассивность. При полном заполнении ( -уровней никеля электронами меди (что происходит при содержании в сплаве более 60 ат. % меди) способность сплава к образованию ковалентных (электронных) связей с кислородом исчезает, металл вступает в ионную связь с кислородом, образуя фазовые окислы, не обладающие защитными свойствами. Скорчеллетти с сотрудниками [3] считают заполнение -уровней никеля не единственной и не главной причиной изменения химической стойкости меднопикелевых сплавов с изменением их состава. Большое значение придается свойствам коррозионной среды, под воздействием которой может изменяться структура и состав поверхностного слоя сплава, определяющего его коррозионное поведение. Этот слой в зависимости от агрессивности среды может в большей или меньшей степени обогащаться более стойким компонентом сплава, с образованием одной или нескольких коррозионных структур, что приводит к смещению границы химической стойкости сплавов. Это предположение подтвердилось при исследовании зависимости работы выхода электрона от состава сплавов до и после воздействия на них коррозионных сред (например, растворов аммиака различной концентрации). [c.114]



Смотреть страницы где упоминается термин Химическое электрохимическое поведение меди: [c.109]    [c.148]    [c.802]   
Смотреть главы в:

Коррозия и защита от коррозии -> Химическое электрохимическое поведение меди




ПОИСК





Смотрите так же термины и статьи:

Электрохимическое поведение



© 2025 chem21.info Реклама на сайте