Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цикл глюкозо-аланиновый

Рис. 24.6. Глюкозо-аланиновый цикл Рис. 24.6. Глюкозо-аланиновый цикл

Рис. 19-14. Глюкозо-аланиновый цикл. Этот цикл выполняет две функции 1) переносит аминогруппы из скелетных мышц в печень, где они превращаются в мочевину, и 2) обеспечивает работающие мышцы глюкозой, поступающей с кровью из печени, где для ее образования используется углеродный скелет аланина. Рис. 19-14. Глюкозо-аланиновый цикл. Этот цикл выполняет две функции 1) <a href="/info/1321178">переносит аминогруппы</a> из <a href="/info/102654">скелетных мышц</a> в печень, где они превращаются в мочевину, и 2) обеспечивает работающие мышцы глюкозой, поступающей с кровью из печени, где для ее образования используется <a href="/info/31778">углеродный скелет</a> аланина.
Рис. 22.6. Цикл молочной кислоты (цикл Кори) и глюкозо-аланиновый цикл Рис. 22.6. <a href="/info/109149">Цикл молочной кислоты</a> (цикл Кори) и глюкозо-аланиновый цикл
    Синтез незаменимых аминокислот из продуктов обмена углеводов и жиров в организме животных отсутствует. Клетки животных не содержат ферментных систем, катализирующих синтез углеродных скелетов этих аминокислот. В то же время организм может нормально развиваться исключительно при белковом питании, что также свидетельствует о возможности синтеза углеводов из белков. Процесс синтеза углеводов из аминокислот получил название глюконеогенеза. Он доказан прямым путем в опытах на животных с экспериментальным диабетом более 50% введенного белка превращается в глюкозу. Как известно, при диабете организм теряет способность утилизировать глюкозу, и энергетические потребности покрываются за счет окисления аминокислот и жирных кислот. Доказано также, что исходными субстратами для глюконеогенеза являются те аминокислоты, распад которых сопровождается образованием прямо или опосредованно пировиноградной кислоты (например, аланин, серин, треонин и цистеин). Более того, имеются доказательства существования в организме своеобразного циклического процесса—глюкозо-аланинового цикла, участвующего в тонкой регуляции концентрации глюкозы в крови в тех условиях, когда в период между приемами пищи организм испытывает дефицит глюкозы. Источниками пирувата при этом являются указанные аминокислоты, образующиеся в мышцах при распаде белков и поступающие в печень, в которой они подвергаются дезаминированию. Образовавшийся аммиак в печени обезвреживается, участвуя в синтезе мочевины, которая выделяется из организма. Дефицит мышечных белков затем восполняется за счет поступления аминокислот пищи. [c.548]


    Мышцы также синтезируют и высвобождают большие количества аланина и глутамина. В синтезе этих соединений используются аминогруппы, которые образуются при распаде аминокислот с разветвленной цепью и затем переносятся на а-кетоглутарат и пируват в ходе реакций трансаминирования. Источником почти всего пирувата, идущего на синтез аланина, является гликолиз из экзогенной глюкозы. Эти реакции формируют так называемый глюко-зо-аланиновый цикл, в котором аланин мышц используется в процессе печеночного глюконеогенеза и в то же время доставляет в печень аминогруппы, удаляемые в виде мочевины. [c.341]

    Составьте схему глюкозо-аланинового цикла, дополнив недостающие компоненты и назвав процессы  [c.238]

    Аминотрансферазы содержатся практически во всех органах, но наиболее активно реакции трансаминирования протекают в печени. Функциональное значение трансаминирования в разных органах различно. Например, работающая мышца выделяет в кровь наряду с молочной кислотой значительные количества аланина. Аланин образуется в мышце из пировиноградной кислоты путем трансаминирования. Из кровотока аланин поглощается печенью, превращается в пируват, а пируват используется для глюконеогенеза (глюкозо-аланиновый цикл, см. рис. 9.24). Этим путем осуществляется перенос из мышц в печень не только пирувата, но и азота в печени за счет аминогруппы аминокислот образуется мочевина, которая выводится из организма. [c.336]

    Механизмы увеличения продукции АТФ. Многие процессы, обеспечивающие работу мышц энергией, рассмотрены в предыдущих разделах. К ним относится увеличение снабжения мышц окисляемыми субстратами мобилизация гликогена печени и мышц, глюконеогенез из молочной кислоты (цикл Кори и глюкозо-аланиновый цикл), мобилизация депонированных жиров и поступление жирных кислот и кетоновых тел в мышцы. Увеличиваются также легочная вентиляция и скорость кровотока, а следовательно, и снабжение мышц кислородом. Эти процессы вместе с механизмами аллостерической регуляции, повышающими активность ключевых ферментов катаболизма, многократно увеличивают скорость синтеза АТФ. [c.527]

    Из клеток, в которых происходит гликолиз, образующаяся молочная кислота поступает в кровь и улавливается в основном печенью, где и превращается в пируват. Пируват в печени частично окисляется, частично превращается в глюкозу — цикл Кори, или глшкозо-лактатпый цикл (рис. 9.24). Часть пирувата в мышцах путем трансаминирования превращается в аланин, который транспортируется в печень, и здесь снова образует пируват — глюкозо-аланиновый цикл. [c.266]


Смотреть страницы где упоминается термин Цикл глюкозо-аланиновый: [c.261]    [c.439]    [c.312]    [c.238]   
Биологическая химия Изд.3 (1998) -- [ c.548 ]




ПОИСК







© 2025 chem21.info Реклама на сайте