Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты характер распада

    Мочевина. При кратковременной работе концентрация мочевины в крови увеличивается незначительно, а при длительной физической работе уровень мочевины в крови может возрасти в 4-5 раз. Причиной увеличения содержания мочевины в крови является усиление катаболизма белков под воздействием физических нагрузок, особенно силового характера. Распад белков, в свою очередь, ведет к накоплению свободных аминокислот, при распаде которых образуется в большом количестве аммиак. В печени ббльшая часть образовавшегося аммиака превращается в мочевину. [c.162]


    ФЕРМЕНТАЦИЯ. Биохимический процесс превращения веществ при переработке растительного и животного сырья. При Ф. главным образом формируются специфические свойства того или иного продукта, его вкус, цвет, аромат и др. Поэтому в пищевой, легкой и фармацевтической промышленности Ф.— основной технологический процесс. Примерами в этом отношении являются чайная, табачная, хлебопекарная отрасли промышленности. Предполагали, что Ф.—микробиологический процесс. Но в настоящее время благодаря исследованиям советских ученых окончательно установлен ферментативный характер этих превращений. Главную ро.иь в этом процессе играют ферменты, как ускорители процессов превращения веществ. Для нормального течения Ф. необходимо прежде всего разрушение тканей и клеток растительного и животного сырья, например помол зерна в мукомольно-хлебопекарном производстве, раздавливание виноградной ягоды в виноделии, томление и сушка табачного листа, скручивание завяленного чайного листа и т. д. Для нормального течения Ф. требуется также создание определенных условий — температура, относительная влажность воздуха и др. Чайный лист после завяливания подвергается скручиванию на специальных машинах — роллерах, где происходит разрушение тканей и клеток листа, содержимое которых подвергается биохимическим изменениям с участием ферментов. Листья чая содержат сложную смесь катехинов, которые при Ф. претерпевают окислительную конденсацию с образованием более сложных соединений. Катехины взаимодействуют не только между собой, но и с разными аминокислотами, образуя соединения, обладающие разными запахами, с сахарами, белками и другими соединениями. В результате сложных превращений при Ф. образуются цвет, вкус, аромат черного байхового чая. Ф. табака — автолитический процесс, происходящий в убитых тканях листьев после их томления и сушки. При этохм окончательно формируются характерные признаки качества табака, как сырья для получения табачных изделий. Изменяется химический состав табака, уменьшается содержание белкового азота и идет накопление растворимых азотистых соединений, ул1еньшается содержание никотина, идет распад углеводов, накопление ароматических со- [c.317]

    Потребность человека в белке зависит от его возраста, пола, характера трудовой деятельности. В организме здорового взрослого человека должен быть баланс между количеством поступающих белков и выделяющимися продуктами распада. Для оценки белкового обмена введено понятие азотного баланса. В зрелом возрасте у здорового человека существует азотное равновесие, т. е. количество азота, полученного с белками пищи, равно количеству выделяемого азота. В молодом растущем организме идет накопление белковой массы, образуется ряд нужных для организма соединений, поэтому азотный баланс будет положительным — количество поступающего азота с пищей превышает количество выводимого из организма. У людей пожилого возраста, а также при некоторых заболеваниях, недостатке в рационе питания белков, незаменимых аминокислот, витаминов, минеральных веществ наблюдается отрицательный азотный баланс — количество выделенного из организма азота превышает его поступление в организм. Длительный отрицательный азотный баланс ведет к гибели организма. На белковый обмен влияют биологическая ценность и количество поступающего с пищей белка. [c.18]


    Полипептиды, так же как и сами аминокислоты, амфотерны и каждому свойственна своя изоэлектрическая точка. Они представляют собою соединения, промежуточные между аминокислотами и белками, — в условиях кислотного и щелочного гидролиза и те и другие распадаются на аминокислоты. Низшие полипептиды кристалличны, растворимы в воде по мере перехода к более высокомолекулярным полипептидам способность к кристаллизации ослабевает. Полипептиды могут также включать моно-аминодикарбоновые кислоты, подобные аспарагиновой и глутаминовой. Тогда они приобретают кислотные свойства за счет второй карбоксильной группы. Полипептиды, образованные с участием диаминокислот, имеют основной характер. Свойства полипептидов, образованных с участием серина ( -окси-а-аминопропионовой кислоты) и цистеина ( -меркапто-а-аминопропионовой кислоты), отражают наличие ОН- и соответственно SH-групп. Некоторые полипептиды играют важную биологическую роль в живых организмах. Таков, папример, трипептид глутатион [c.506]

    Как видно из схемы, всосавшиеся аминокислоты в первую очередь используются в качестве строительного материала для синтеза специфических тканевых белков, ферментов, гормонов и других биологически активных соединений. Некоторое количество аминокислот подвергается распаду с образованием конечных продуктов белкового обмена (СО,, Н,0 и МНз) и освобождением энергии. Подсчитано, что в организме взрослого человека, находящегося на полноценной диете, образуется примерно 1200 кДж в сутки за счет окисления около 70 г аминокислот (помимо пищевых, также эндогенных аминокислот, образующихся при гидролизе тканевых белков). Это количество составляет около 10% от суточной потребности организма человека в энергии. Количество аминокислот, подвергающихся распаду, зависит как от характера питания, так и от физиологического состояния организма. Например, даже при полном голодании или частичном белковом голодании с мочой постоянно выделяется небольшое количество азотистых веществ, что свидетельствует о непрерывности процессов распада белков тела. Аминокислоты, как и белки, не накапливаются и не откладываются в тканях (наподобие жиров и гликогена), и у взрослого человека при нормальной обеспеченности пищевым белком поддерживается довольно постоянная концентрация аминокислот в крови (см. главу 16). [c.429]

    Простыми называют белки, которые при гидролизе распадаются исключительно на аминокислоты сложными — белки, которые при гидролизе наряду с аминокислотами дают соединения другого характера, например нуклеиновые кислоты, углеводы, фосфорную кислоту и пр. Сложные белки, или протеиды, состоят, таким образом, из собственно белковой части в сочетании с другими, небелковыми веществами. [c.48]

    Направление и гштенсивность обмена белков в первую очередь определяются физиологическим состоянием организма и несомненно регулируются, как и все другие ввды обмена, нейрогормональными факторами. Более интенсивно обмен белков протекает в детском возрасте, при активной мышечной работе, беременности и лактации, т.е. в случаях, когда резко повышаются потребности в белках. Существенное влияние на белковый обмен оказывает характер питания и, в частности, количественный и качественный белковый состав пищи. При недостаточном поступлении белков с пищей происходит распад собственных белков ряда тканей (печени, плазмы крови, слизистой оболочки кишечника и др.) с образованием свободных аминокислот, обеспечивающих синтез абсолютно необходимых цитоплазматических белков, ферментов, гормонов и других биологически активных соединений. Таким образом, в жертву приносятся некоторые строительные белки тканей для обеспечения жизнедеятельности целостного организма. Введение с пищей повышенных количеств белка, напротив, не оказывает заметного влияния на состояние белкового обмена, поскольку [c.411]

    Белковые вещества входят в состав протоплазмы и часто составляют больше половины ее массы. Общее содержание белков в растениях зависит от их принадлежности к тому или иному виду (см. табл. 4). В деревьях оно меньше и колеблется от 1 до 10%. Значительно больше белковых веществ в простых водорослях (20—30%), а в некоторых бактериях их содержание достигает 80%. Молекулярная масса различных белков колеблется в широких пределах от (17500 до 6800000). Изучение белков затруднено тем, что они представляют собой сложные смеси, выделение которых из растений в неизмененном виде почти невозможно. Основной способ выяснения их строения состоит в изучении продуктов их гидролитического распада, осуществленного с помощью минеральных кислот или оснований. Белковые вещества легко гидролизуются не только в присутствии кислот и оснований, но и под действием различных ферментов (протеаз, пепсина, трипсина и др.). При их распаде образуется смесь до 30 различных аминокислот. Большинство из них относится к группе аминокарбоновых кислот, а некоторые имеют ароматический и гидроароматический характер [10, с. 90]. [c.25]


    Многие промышленные материалы — это вещества белкового характера, например кожа, шелк, шерсть. Распад белков начинается биологическим гидролизом, в результате которого образуются аминокислоты, претерпевающие дальнейший распад — дезаминирование с образованием аммиака и соответствующих органических кислот. Примерно реакции протекают следующим, образом  [c.23]

    Взаимодействие сахаров с аминокислотами на самом деле имеет более сложный характер и, согласно В. Л. Кретовичу, состоит в том, что конденсация сахара с аминокислотой приводит к распаду обоих компонентов, причем из аминокислоты образуются соответствующий альдегид, аммиак и углекислота, а из сахара (гексозы) — оксиметилфурфурол. Альдегид, возникающий при дисмутации, и оксиметилфурфурол легко вступают в реакцию с новыми молекулами аминокислоты, продуцируя меланоидины. Некоторое количество меланоидинов образуется и из оксиметилфурфурола, образующегося при разложении глюкозы и фруктозы. [c.163]

    Корф [15]. Используя ДНФ-О -аминокислоты, эти авторы показали, что под действием света происходят очень значительные п различные по характеру процессы распада с освобождением летучих соединений. Результаты опытов показаны на фиг. 56. [c.140]

    При выполнении спортивных нагрузок усиливается распад белков, главным образом мышечных. Особенно быстро расщепляются белки при выполнении упражнений силового характера. Для восполнения разрушенных при работе белков необходимо поступление во время восстановления повышенного количества аминокислот. Это делает необходимым использование рациона с повышенным содержанием белков. Наиболее высокая потребность в белках отмечается у тяжелоатлетов и культуристов. У этих спортсменов потребление белков может достигать 200-250 г в сутки. [c.233]

    Аминокислоты расщепляются под действием бактерий, грибов и др. на спирты, аммиак и углекислый газ. Например, изолейцин-> СНдСН2СН(СНз)СН20Н + КНд + СО2. При разложении, вероятно, сначала окислитель электрофильно атакуется по а-углеродному атому аминокислоты, который из-за одновременной потери СО2 приобретает анионоидный характер. Образовавшийся альдегид-аммиак быстро распадается на NHз и альдегид, который восстанавливается до спирта  [c.64]

    Дегидрирующая способность. В 1862 г. Штреккер нашел, что аллоксан в водной среде окисляет а-аминокислоты с образованием альдегидов двуокиси углерода и аммиака [804, 805]. Позднее Траубе показал, что этот распад происходит не только в присутствии аллоксана аналогично действует также и изатин, в присутствии которого а-аминофенилуксусная кислота и бензиламин распадаются с образованием бензальдегида [806]. На основании этих ранних исследований установлено, что реакция Штреккера имеет для а-амино-кислот типа R H(NH2) 00H достаточно общий характер и происходит в присутствии веществ, содержащих в своем составе группировку —СО(СН=СН) СО— [807, 808]. В каждом случае аминокислота распадается с образованием альдегида, содержащего на 1 атом углерода меньше [807, 808]. Несмотря на то, что амины, подобные бензиламину и 1-аминометилнафталину, при взаимодействии с изатином расщепляются с образованием соответствующих альдегидов [806, 809], для чисто алифатических аминов такой распад не имеет места [806]. Известно далее, что распад аминов типа бензиламина ограничивается стерическими факторами так, 2,4,6-триметил- и 2,6-дихлорбензил-амины устойчивы к действию изатина [809, 810]. [c.171]

    Поведение изатина в условиях реакции Штреккера послужило предметом специального исследования [811]. Лангенбек при проведении реакции изатина с.аланином в отсутствие воздуха выделил изатид [812]. Однако в присутствии воздуха или подходящего акцептора водорода, как, например, метиленового синего, который способен окислять изатид обратно в изатин, реакция принимает характер каталитического процесса, в котором 1 молекула изатина способствует распаду значительного числа молекул аминокислоты. Каталити- [c.171]

    Остальные процессы при созревании мяса связаны с глик зом — превращением гликогена в молочную кислоту, денат цией и протеолизом, частичным распадом в основном саркоп менных белков до пептидов и аминокислот. Эти процессы п( кают при О °С и усиливаются при повышении температуры, приводит к размягчению ткани и улучшению органолептиче свойств мяса. В настоящее время доказано, что процессы гл лиза и протеолиза носят ферментативный характер (белки сс нительных тканей не подвергаются протеолизу). [c.166]

    Примечания. Предварительный электрофорез служит для отделения диаминокислот от углеводов и примесей аминокислот не основного характера. В отличпе от осаждения фосфорновольфрамовой кислотой электрофорез может быть проведен количественно. Электрофорез особенно полезен в тех случаях, когда гидролизат содержит большое количество пролина, который затрудняет выделение лизина в виде пикрата, пли содержит большое количеотво продуктов распада углеводов, которые препятствуют выделению аргинина и осаждению фосфовольфраматов диаминокислот. [c.43]

    Субстраты, окисляюгциеся в тканях, постепенно дегидрируются, т. е. теряют под влиянием различных последовательно включающихся в окислительный процесс дегидрогеназ атомы водорода. При аэробном окислении водород, проходя через ряд промежуточных переносчиков, встречается с кислородом, получающим электроны через цитохромную систему. Соединение водорода с кислородом приводит к образованию одного из конечных продуктов дыхания — воды. Субстрат, присоединяя воду и теряя водород, превращается в конце концов в соединение, имеющее характер кетокислоты. К числу кетокислот, образующихся при окислении различных субстратов в организме, относятся пировиноградная кислота, щавелевоуксусная, кетоглютаровая и др. Кетокислоты, подвергаясь частью окислительному декарбоксилированию, частью [3-декарбоксилиро-ванию, распадаются с отщеплением СО2. Остающаяся часть окисляемой молекулы вновь подвергается тем же превращениям, сопровождающимся отщеплением водорода и образованием воды, присоединением воды и анаэробным образованием СОа. Таким образом, образование Н2О и СО2 при тканевом дыхании является результатом чередующихся дегидрирований и декар-боксилирований субстрата дыхания. Именно так окисляются все важнейшие субстраты тканевого дыхания. Азотистые вещества, например аминокислоты, окисляются таким же образом, но имеющийся в этих соединениях азот в процессе окисления отщепляется в форме аммиака или переносится на соответствующие акцепторы аминных групп (стр. 332). Более конкретно механизм окисления ряда промежуточных продуктов аэробного обмена рассматривается на стр. 258,291. [c.237]

    Имеются указания на то, что высшим растениям также свойственно динамическое состояние аминокислот и белков i86], однако на растениях проведено по этому вопросу значительно меньше исследований, чем на крысах. При изучении индуцированного синтеза р-галактозидазы у Es heri hia oti найдено, что этот фермент синтезируется не за счет аминокислот, имеющих источником другие клеточные белки. Этот процесс носит необратимый характер, и, по имеющимся данным, другие клеточные белки Е. соИ не обменивают своих аминокислот с метаболическим фондом аминокислот, используемым для биосинтеза ]3-галактозидазы (стр. 275). Еще один пример необратимого процесса синтеза белка — образование вируса табачной мозаики 87] хотя вирус синтезируется из продуктов распада белков листьев, между однажды синтезированным вирусом и тканями листа не происходит обмена компонентами. [c.179]

    Пути синтеза и распада аминокислот бывают часто, но не всегда различными. В ряде случаев противопоставление синтеза и катаболизма носит произвольный характер, например при рассмотрении обмена аргинина, орнитина и цитруллина или глицина и серина. В нижеследующих разделах этой главы при рассмотрении обмена каждой аминокислоты реакции синтеза и катаболизма обсуждаются вместе. Такой порядок изложения представляет некоторые удобства, однако совершенно очевидно, что многие реакции обмена служат связующими звеньями между аминокислотами, обмену которых посвящены отдельные разделы. [c.307]

    Протеины, обладающие подобным строением, тоже дают биурето вую реакцию. Реакция не идет только тогда, когда протеин полностью гидролизован до аминокислоты. Биуретовую реакцию дают также многие соединения, являющиеся промежуточными продуктами распада белка, например все известные в настоящее время пептоны включая тетрапептиды. Для ди- и трипептидов биуретовая реакция ненадежна, что зависит, вероятно, от характера пептидной связи. Протекание биурето-вой реакции для полипептидов не зависит ни от характера аминокислот, ни от природы их связи между собой. [c.529]

    Нейтральные нротеиназы участвуют в нормальных процессах обновления белков, поддерживая определенный пул свободных аминокислот. Поэтому изложенные выше данные указывают на возможность того, что при естественном сне имеет место некоторое активирование метаболизма белков в головном мозгу (по крайней мере, в больших полушариях и стволовой части) без изменения автолитических процессов, связанных с активностью кислых протеиназ. Лишение же ПФС, видимо, сопровождается торможением перестройки белков (возможно, охранительного характера) при нарастающей угрозе распада клеток. [c.31]

    Триптофан претерпевает некоторое разрушение независимо от того, применяется ли в качестве гидролизующего агента кислота или щелочь. В присутствии углеводов его разрушение горячей кислотой обычно протекает сполна [14, 134]. Тирозин при этих -условиях такл е изменяется г134], а цистеин в присутствии углеводов является более лабильным, чем в других случаях [135]. Тирозин может также претерпевать разрушение при щелочном гидролизе [136]. Предполагается, что в горячей кислоте триптофан в присутствии некоторых других аминокислот может быть менее стабилен, чем когда он одни. Доступ кислорода может также усиливать его стабильность и влиять на количество получающегося гумина. Следует ожидать также иЗхМенения других аминокислот, если происходит такое взаимодействие с триптофаном. При обработке кислотами триптофан, вероятно,, переходит в дикарбоновую аминокислоту [137]. В связи с этим аминокислотным распадом интересны полосы, имеющие характер артефактов при хроматографии на силикагеле [78]. Тристрам [138] показал распад аргинина при кислотном гидролизе в присутствии углевода. Шейн и Берг [121а] при кислотном гидролизе [c.57]

    В гликоген могут превращаться не только углеводы пищи и молочная кислота, образующаяся при сокращении мышцы, но и другие вещества. Эти гликогенные соединения образуются в процессе глюконеогене-за, который представляет собой превращение в глюкозу предшественников неуглеводного характера. Примерами таких предшественников могут служить гликогенные аминокислоты, глицерин жиров и любой из продуктов метаболического распада глюкозы, нанример пировиноградная кислота, из которой глюкоза может образовываться путем обратимых реакций обмена. Реакции, рассмотренные в этом разделе, могут быть суммарно представлены в виде цикла молочной кислоты (см. схему). [c.367]

    Существенным превращениям при прорастании подвергаются также и азотистые соединения. Активирование деятельности протеиназ приводит к резкому увеличению содержания свободных аминокислот. В прорастающих семенах протекают весьма оживленные процессы трансаминирования, в результате чего состав аминокислот изменяется качественно, причем обнаруживаются и непротеиногенные аминокислоты. Большая подвижность характерна также для нуклеиновых соединений семян. Под влиянием возросшей активности ферментов в прорастающих семенах усиливаются превращения запасных веществ. Характер этих превращений зависит от особенностей химического состава семени, однако в основном они направлены в сторону распада отложенных здесь полимерных и других сложных соединений. [c.535]

    Эту возможность использовали в 1959 г. Чарлз Яновский и Леннокс для построения генетической карты тонкой структуры области trp хромосомы Е. oli. Эта область, как видно из общей карты на фиг. 123, расположена на кольцевой хромосоме в точке, приблизительно соответствующей 24-й минуте, поблизости от генов ton и i/sB, контролирующих структуру рецепторов фага Т1 и синтез аминокислоты цистеина соответственно. Для построения карты тонкой структуры Яновский и Леннокс сосредоточили свое внимание на наборе ауксотрофов Тгр , полученных Яновским. Эти мутанты распадаются на пять четких классов (табл. 5), различающихся по потребностям в факторах роста и по характеру накапливающихся в клетке метаболитов, что в свою очередь зависит от того, какой именно из последних этапов биосинтеза триптофана (фиг. 37) у этих мутантов блокирован. Каждый из этих ауксотрофов Тгр может быть превращен в прототроф Тгр+ заражением лизатом трансдуцирующего фага Р1, выращенного на донорном штамме Е. соИ Тгр+ дикого типа. При отборе таких прототрофных трансдуктантов путем высева зараженных фагом [c.358]

    Молекулярные нарушения обмена аминокислот обычно имеют наследственный характер, при этом аминокислоты и их метаболиты оказывают токсический эффект на организм. В первую очередь это выражается в виде расстройства деятельности центральной нервной системы. Генетическим дефектом ферментов обмена аминокислот обусловлены гипер-аминоацидемии — повышенное содержание в крови отдельных аминокислот и аминоацидурии — появление аминокислот в моче. Типичный пример фенилкетонурия — нарушение обмена фенилаланина как результат дефекта фенилаланингидроксилазы. Фенгааланин при этом не вовлекается в окислительно-восстановительный распад и накапливается в большом количестве в крови. Подобным образом проявляется и нарушение обмена триптофана, метионина, цистеина, тирозина и ряда других аминокислот. Вторичные аминоацидурии связаны с нарушением канальцие-вого транспорта аминокислот в почках. Нарушения обмена гемоглобина относятся либо к белковому компоненту, либо к гему. Гемоглобинопатии — аномалии, связанные с нарушением механизма синтеза белкового компонента гемоглобина при нормальной структуре гема. Порфирин — нарушения отдельных этапов синтеза гема ведут к накоплению в организме отдельных порфиринов или их предшественников. Они легко откладываются в коже, что приводит к фотосенсибилизации. Нарушения, связан- [c.395]

    Обнаружение в органическом веществе пород или в палеонтологических остатках продуктов распада высокополимерных природных соединений (аминокислот, ароматических структурных единиц лигнина, соединений шорфириновой структуры) позволяет представить не только отдельные этапы превращения этих соединений, но и возможные условия для осуществления реакций взаимодействия их с металлами. Накопившийся в последние годы обширный литературный материал в этой области, а также результаты наших собственных исследований химического состава органического вещества торфов, углей, сланцев наряду с изучением характера и форм связи органического вещества с металлами послужили основой для составления настоящей монографии. [c.14]


Смотреть страницы где упоминается термин Аминокислоты характер распада: [c.265]    [c.432]    [c.38]    [c.355]    [c.197]    [c.502]    [c.166]    [c.355]    [c.25]   
Успехи органической химии Том 3 (1966) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Характер распада



© 2025 chem21.info Реклама на сайте