Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стэкинг-взаимодействия отдельных оснований

    СТЭКИНГ-ВЗАИМОДЕЙСТВИЯ ОТДЕЛЬНЫХ ОСНОВАНИЙ [c.332]

    Особенно важно, что значение 10,4 является средним для ДНК как целой молекулы при определенных условиях. Изменение условий или даже последовательности отдельных оснований может привести к большему или меньшему закручиванию спиральной структуры в соответствующих участках. Действительно, методом рентгеноструктурного анализа было показано, что молекула, состоящая из 12 пар оснований, содержит 10,1 пары оснований на виток, что обеспечивается слабым сдвигом каждой пары оснований, при котором улучшаются меж-плоскостные (стэкинг) взаимодействия между основаниями, по сравнению с первоначальной моделью. [c.29]


    С = и [93, 94]. Природа сил, обеспечивающих стэкинг-взаимодействие, различна. Отчасти, стэкинг обусловлен взаимодействием между индуцированными диполями, образованными тс-электронами оснований. При исследовании димеризации кофеина в воде показано [95], что она имеет характер, типичный для комплексов с переносом заряда, а димер af является слабо п-связанным молекулярным комплексом. Кроме того, эти структуры наиболее стабильны в водных растворах, что указывает на важную роль гидрофобных взаимодействий в стабилизации стопкообразных структур. Известно, что стэкинг представляет собой сильно экзотермический процесс (AS < 0,1Д// > TAS). В то же время, гидрофобные взаимодействия являются эндотермическими и, следовательно, определяются энтропией (Д5 > 0). Поэтому нельзя безоговорочно утверждать, что гидрофобные взаимодействия являются главными силами, обеспечивающими стэкинг нуклеиновых оснований в воде. Такие выводы базируются, главным образом, на положительных значениях энтальпии и энтропии, сопутствующих гидрофобным эффектам, а также на нулевом изменении теплоемкости при переносе оснований из органических сред в воду. Однако, это не означает, что полученные в настоящее время экспериментальные результаты однозначно исключают любое участие гидрофобных эффектов в стэкинг-взаимодействиях. Интересный подход к исследованию энергетики стэкинга оснований разработали Синаноглу и Абдулнур [96]. Они развили идею о том, что поверхностное натяжение наряду с другими факторами играет важную роль в образовании стопкообразных структур. Очевидно, что для создания отдельных полостей для каждого основания необходимо совершить больше работы, чем для создания одной большой полости, которая вместит все основания без растворителя между ними. Следовательно, будет наблюдаться тенденция к упаковке оснований в одну полость. Возможно, вода проявляет такую сильную тенденцию к стабилизации стопочных структур из-за того, что она обладает относительно высоким поверхностным натяжением (-72 дин см ) по сравнению, например, с этанолом (22 дин см" ). Разница в энергии, [c.236]

    На основании рентгеноструктурного анализа и правил Чаргаффа в 1953 г. Уотсон и Крик предложили двуспиральную модель строения ДНК (вторичная структура). Молекула ДНК построена из двух анти-параллельных полинуклеотидных цепей, образующих правую спираль (описано пять вариантов А-Е и Z-фopмa — левая спираль). Обе цепи удерживаются между собой водородными связями между комплементарными парами оснований (А-Т — две водородных связи, Г-Ц — три водородных связи). Углеводно-фосфорные остовы обеих цепей обращены наружу, а основания — внутрь спирали плоскости оснований параллельны и между ними имеется гидрофобное взаимодействие (стэкинг-взаимодействие). Вдоль оси отдельной цепи на каждые 0,34 нм приходится один мононуклеотид, шаг спирали 3,4 нм, в один виток укладывается 10 нуклеотидных остатков, диаметр спирали 2 нм. Отрицательно заряженные фосфатные группы, во-первых, образуют два спиральных желобка — малый и большой во-вторых, отталкиваются и стремятся вытянуть цепь ДНК. Именно поэтому в реальной клетке ДНК связана с положительно заряженными белками (протамины и гистоны) и полиаминами (спермин, спермидин). Структура ДНК может изменяться в зависимости от ионного микроокружения в клетке. [c.292]


    Однако изучение драйдинговских моделей показывает, что возможно существование нескольких сложенных и открытых конформаций. На этом основании было постулировано динамическое равновесие между сложенными и открытыми формами. Переход сложенных форм в открытые и наоборот, возможно, осуществляется путем вращения каждой половины ФАД вокруг пирофосфорной связи с сохранением конформаций половин неизменными. Однако в ЯМР таектрах не удается увидеть индивидуальные сигналы отдельных конформеров, так как значение энергии стэкинг-взаимодействия для ФАД невелико и составляет около 5 икал/моль. [c.155]

    Интересный подход к исследованию энергетики стэкинга оснований разработали Синаноглу и Абдулнур (1964 г.). Они развили идею о том, что поверхностное натяжение наряду с другими факторами может быть использовано для вычисления работы, необходимой для образования из сольватированных неупорядоченных оснований спиральной структуры, что сопровождается вытеснением растворителя из промежутка между основаниями. Задача в этом случае сводится к вычислению работы, которая необходима для создания полостей в растворе для индивидуальных сольтватирован-ных оснований и для оснований, уложенных в спираль. Работа, затраченная на создание полости площадью дА, есть просто би = уйА, где у — поверхностное натяжение. Очевидно, для создания отдельных полостей для каждого основания необходимо совершить больше работы, чем для создания одной большой полости, которая вместит все основания без растворителя между ними. Следовательно, будет наблюдаться тенденция (до тех пор, пока рассматривается только взаимодействие растворитель — растворитель) к упаковке оснований в одну полость. [c.310]


Смотреть страницы где упоминается термин Стэкинг-взаимодействия отдельных оснований: [c.69]    [c.70]   
Смотреть главы в:

Биофизическая химия Т.3 -> Стэкинг-взаимодействия отдельных оснований




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие с основаниями



© 2025 chem21.info Реклама на сайте