Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностное натяжение, влияние высокого давления

    Химика в подавляющем большинстве случаев интересуют объекты, для которых п = 2, так как он редко имеет дело с системами, подвергающимися действию электрического, магнитного и других полей. Относительно чаще он сталкивается с системами, обладающими сильно развитой поверхностью (пленки), когда нельзя пренебречь поверхностным натяжением (т. е. поверхностной энергией по сравнению с заключенной в объеме). Для конденсированных систем л — 1, так как для них практически можно пренебречь влиянием давления (исключая область очень высоких давлений) в этом случае правильнее говорить об условной вариантности системы. [c.126]


    На точность гидрирования оказывают влияние три главных фактора температура, давление и поверхностное натяжение жидкости в электрометрической ячейке. При мертвом объеме 46,5 мл, когда в реакционный сосуд вводят 5 мл растворителя, изменение температуры во время гидрирования на 1 °С эквивалентно 0,16 мл газа. Окончательный результат может быть высоким или низким в зависимости от направления изменения температуры. Для сравнительно больших проб, требующих около 15 мл водорода, погрешность анализа, обусловленная изменением температуры, составит лишь 1%, для малых проб она может достигать 20%. Колебания температуры в опытах Миллера и Де Форда были невелики и ИМ И можно было пренебречь. Точность анализа оставалась высокой. В летнее время колебания комнатной температуры могут достигать в течение дня 10 °С, но во время измерения колебания должны быть малыми. В некоторых случаях приходится пользоваться специальными методами регулирования температуры. [c.328]

    Распределение капель для вращающихся распылителей совершенно подобно распределению, полученному с помощью форсунок давления. Поскольку во вращающихся распылителях отсутствуют каналы малого сечения, поток сохраняется при гораздо больших вязкостях, чем для форсунок давления. Влияние вязкости, плотности и поверхностного натяжения не исследовано, и возможно, что здесь действуют несколько иные закономерности. Представляется несомненным, однако, что высокая скорость вращения, низкая вязкость и малые расходы будут способствовать получению мелких капель с минимальным диапазоном размеров. [c.82]

    Прежде всего, остановимся на величине поверхностного натяжения нефти, граничащей с газовой или воздушной средой. Разработка залежей нефти может происходить на больших глубинах, 3000 м -и более. В этих условиях имеют место высокие давления, достигающие 700 кгс/см , и повышенная температура до 150 °С Отсюда необходимо величину поверхностного натяжения рассматривать в зависимости от температуры и давления с тем, чтобы оценить влияние этих параметров на адгезию и смачивание 31-734 [c.327]

    В правой части уравнений содержатся частные производные 0т поверхностного натяжения по молярной доле к-то компонента в растворе значение этой производной характеризует поверхностную активность /г-го компонента. Согласно (1.23) — (1.26) величины gf зависят от температуры, давления и концентрации раствора, включая концентрационную зависимость коэффициентов активности компонентов. Для конденсированных фаз влияние давления сказывается лишь при высоких значениях его. Поэтому при обычных давлениях в первую группу факторов целесообразно включить  [c.98]


    Влияние давления на поверхностное натяжение. Можно ожидать, что высокое давление паров над поверхностью жидкости [c.222]

    Подчеркнем, что гипотеза Хансена о влиянии горячих точек на процесс зарождения газовых пузырьков в пересыщенном расплаве полимера хорошо согласуется с основными положениями общей теории пенообразования. Действительно, более высокая температура приводит к локальному снижению поверхностного натяжения и вязкости расплава. С другой стороны, давление в растущем газовом пузырьке обратно пропорционально его радиусу и прямо пропорционально поверхностному натяжению жидкой [c.74]

    В состоянии равновесия жидкость и пар имеют одинаковую температуру. Поэтому на первый взгляд безразлично, куда поместить термометр — в жидкую фазу или в паровую. Однако это не так. Многочисленные измерения показали, что кипящая жидкость имеет несколько более высокую температуру, чем пар. Перегрев жидкости обусловлен главным образом двумя причинами — влиянием гидростатического давления и действием поверхностного натяжения, за счет которого давление нара в образующемся пузырьке больше, чем над поверхностью жидкости. За счет перегрева температура кипящей жидкости может быть [c.41]

    Отличия физических свойств рапсового масла от свойств стандартных дизельных топлив оказывает влияние на протекание рабочих процессов дизельных двигателей. В первую очередь это относится к процессам топливоподачи и смесеобразования. Так, высокие плотность и вязкость рапсового масла, подаваемого в камеру сгорания штатной системой топливоподачи дизельного двигателя, являются причиной увеличения цикловой подачи рапсового масла и его часового расхода по сравнению с дизельными топливами по ГОСТ 305-82. Повышенная вязкость рапсового масла приводит к увеличению дальнобойности топливной струи, попаданию части топлива на стенки камеры сгорания и уменьшению доли объемного смесеобразования. При этом уменьшается угол раскрытия топливного факела и ухудшается мелкость распыливания — увеличивается средний диаметр капель. Повышенное поверхностное натяжение рапсового масла повышает неоднородность его распыливания. Из-за повышенных плотности и вязкости этого масла увеличивается максимальное давление впрыскивания. Действительный момент начала впрыскивания топлива смещается при этом в сторону увеличения угла опережения впрыскивания топлива. Эти факторы свидетельствуют о целесообразности корректирования процесса топливоподачи при работе дизельного двигателя на рапсовом масле. [c.189]

    С изменением начальной температуры горючей смеси изменяется скорость хпьшческпх реакций. Повышение температуры увеличивает скорость предпламенных реакций окисления и скорость смешивания при воспламенении распыленных жидких топлив, что приводит к снижению температуры воспламенения и сокращению длительности задержки воспламенения. Влияние начальной температуры на период задержки воспламенепия особенно сильно проявляется при низких температурах оно тем сильнее, чем хуже воспламеняемость топлива. При высоких температурах влияние химической природы топлива проявляется в меньшей мере, чем нри низких. В случае воспламенения распыленных жидких топлив при низких температурах большую роль играет Тф, т. е. время, необходимое на физические процессы подготовки топлива к воспламенению. Эта величина зависит от физических свойств топлива. При низких температурах сильно увеличиваются вязкость, поверхностное натяжение, уменьшается давление насыщенных паров и в результате этого уменьшается эффективность смешения. [c.147]

    Интересный результат получен относительно поверхностного натяжения, которое было исследовано на растворе спирта в воде (90% этилового спирта, V = 24 дин см), используемого вместо воды. При низких весовых расходах и паросодержании влияние этого параметра незначительно (рис. 10), что согласуется с выводами других авторов [19]. При более высоких G и х перепад давления снижается значительно, по мере того как поверхностное натяжение уменьшается (как если бы взаимодействие между фазами увеличивало вклад в энергию диссипации, когда G и х увеличиваются). [c.216]

    С) стали и вытеснение ее атомами защитного газа (аргона), которые гораздо тяжелее атомов серы, на периферию плазменной дуги с температурой 2000 — 1000 °С, где атомы серы соединяются с кислородом в ЗОг, 50 и удаляются из зоны реакции в атмосферу. Процесс протекает при высокой температуре и интенсивном перемешивании расплавленного металла. Значительный температурный градиент оказывает влияние на поверхностное натяжение и усадку и приводит к изменению топографии поверхности переплавленного слоя металла. Испарение серы зависит от температуры плазмы, размера частиц, времени пребывания в плазме, физических свойств частиц плазмообразующего газа и ряда других факторов и с термодинамической точки зрения представляет переход вещества из одной фазы в другую, проходящий при постоянной температуре и неизменном давлении. Процесс получения максимального выхода серы в виде 5, 50, 50г, 5гО при минимальном выгорании легирующих элементов оптимизировали расчетным путем по минимальной загрязненности поверхности примесями (сульфидами, оксисульфидами). При предъявлении требований к чистоте поверхности и переплавленному слою подбирали режимы переплава таким образом, чтобы, варьируя температуру, соотношение компонентов защитного газа (Аг, О2), время пребывания металла в расплавленном состоянии, переплавленный слой металла был мало загрязнен различными примесями и это согласовалось с кинетикой окислительновосстановительного процесса. Применение первого вариационного принципа химической термодинамики для определения равновесных параметров многокомпонентных гетерогенных систем показало, что интенсивное окисление серы кислородом в газовой фазе происходит при высоких температурах (2500 — 3000 °С), которые достигаются при нагреве металла низкотемпературной плазмой в защитной среде, содержащей 95 % Аг + 5 % О2 (рис. 165). Процесс десульфирования путем переплава поверхности металла может быть представлен как ступенчатый, заключающийся в последовательном переходе атомов через различные фазы металл —пар с последующим окислением в области низких температур и удалении в атмосферу в виде молекул и атомов. Наряду с удалением из расплава 5, 502, 50 путем выноса их на поверхность жидкого металла происходит частичное растворение и измельчение неметаллических включений, что приводит к снижению балла по сульфидным включениям. Экспе- [c.392]


    Другие авторы тоже применяли уравнение (12.5.1) для корреляции данных о поверхностном натяжении при высоких давлениях например, Штегемайер [56] ) исследовал системы метан—пентан и метан—декан, Рено и Кац [4] изучали смеси азот—бутан (и гептан), а Лефрансуа и Буржуа [31] рассмотрели влияние давления инертных газов на поверхностное натяжение многих органических жидкостей, а также влияние давления N3 и Н на поверхностное натяжение жидкого аммиака. [c.523]

    Механические свойства жидкости и газавой среды, в которой она распыляется, влияют на разрушение струй или пленок. Особенно важно учитывать вязкость и поверхностное натяжение жидкости. Высокая вязкость способствует удлинению пленки, большое поверхностное натяжение — получению более короткой и прочной пленки, оба фактора вместе — получению более гладкой и устойчивой пленки. При прочих равных условиях низкая вязкость и малое поверхностное натяжение желательны для облегчения диспергирования и получения капель минимального размера. Влияние свойств газа, в который вводится жидкость, менее определенно. Фрезер (см. выше) указывает, что средний размер капель, получаемых в простой механической форсунке при распылении воды в воздухе, медленно возрастает, если давление окружающего воздуха уменьшается по сравнению с атмосферным, резко увеличивается при давлении 450 мм рт. ст., а затем начинает уменьшаться при дальнейшем понижении давления. [c.73]

    Фракционный состав топлива оказывает влияние на степень его распыления, полноту сгорания, дымность выхлопа, нагароот-ложенпе и разжижение картерного масла. При высоком содержании легких фракций увеличивается давление сгорания. Утяжеленное топливо хуже распыляется вследствие повышения поверхностного натяжения топлива. [c.38]

    На рис. 110 [180] и в табл. 33 [164] показано влияние свойств подлежащих перегонке веществ на потерю напора. Измерения, результаты которых представлены в табл. 33, проводили в колонке Олдершоу с 30 реальными ситчатыми тарелками и диаметром 28 мм. Для испытания были взяты вещества, существенно отличающиеся друг от друга по плотности и поверхностному натяжению при температуре кипения. В табл. 34 показана зависимость потери напора и пределов нагрузки для различных типов насадки от давления разгонки [152 [. Из данных таблицы вытекает, что шариковая насадка обеспечивает нагрузку в сравнительно узких пределах и вызывает высокую потерю напора это связано с тем, что шариковая насадка имеет большое пространственное заполиепие — 74%. Насадка хэли-грид (см. главу 7.34), наоборот, обеспечивает широкий интервал и высокий верхний предел рабочих нагрузок [c.189]

    Имеется сходство между последовательностями изменения величин . и многих других свойств водных растворов электролитов. В классической коллоидной химии (см. например, [32]) это ряды Гофмейстера, которые характеризуют высаливающее действие электролитов на ряд белков. Как показал Траубе [33], в таком же порядке изменяется влияние солей на сжимаемость и поверхностное натяжение воды, а также на многие другие свойства, представляющие биологический интерес. Траубе назвал этот порядок порядком давления сцепления раствора (другие использовали термины внутреннее давление или эффективное давление ). Развитый Тамманном [34] и Гибсоном [35] метод его определения основан на том факте, что сжимаемость раствора соли при низком давлении равна сжимаемости воды при более высоком давлении и аналогичным образом зависит от изменения давления. Дополнительное давление, которое следует приложить к воде, чтобы сделать ее сжимаемость равной сжимаемости раствора соли при более низком давлении, Гибсон назвал эффективным давлением соли Р . Лонг и Мак-Дивит установили, что величины dPJd , где — концентрация соли, изменяются параллельно величинам и, характеризующим влияние различных солей на коэффициенты активности бензола, кислорода и водорода в водных растворах. [c.268]

    В сэндвич-камере величины К должны быть постоянными независимо от длины пути разделения, что было подтверждено в случае бензола и нропанола-1. Сильное возрастание величины К в случае применения ацетона для значений 2/, не превышающих 100 мм, предполагает предварительное насыщение сорбента из газовой фазы благодаря высокому давлению паров ацетона. Это происходит даже в сэндвич-камере с расстоянием между поверхностью сорбента и крышкой 1 мм. Уменьшение К для гексана при 2/ >70 мм и для четыреххлористого углерода при 2 > 60 мм можно объяснить только эффектами испарения. Степень предварительного заполнения пор сорбента из газовой фазы в зависимости от 2/ можно рассчитать по величине К, которая различна для К-камеры и 1-миллиметровой сэндвич-камеры. Соответствующие данные приведены в нижней правой части рис. 6.7. Было показано, что, например, в К-камере с насыщенной атмосферой при использовании бензола с 100 мм поры слоя сорбента заполнены растворителем в среднем более чем на 30%. На основании полученных данных пришли к выводу, что при выборе растворителя или системы растворителей в качестве элюента (табл. 6.9) необходимо учитывать такие характеристики, как удельная масса, температура кипения, давление паров и теплота испарения. Такой подход тем более важен в случае использования смесей растворителей. В соответствии с нашими собственными исследованиями поверхностное натяжение растворителей пе играет сколько-нибудь заметной роли в хроматографическом разделении. В присутствии сорбента величина 7, очевидно, изменяется в значительной степени. Однако вязкость растворителя является очень важным фактором, влияющим на величину К и, следовательно, на I. Уменьшение вязкости при повышении температуры оказывает положительное влияние на величину К. Параметры, харак- [c.131]

    Знать и уметь оценить взаимосвязь между факторами, влияющими на экономичность, устойчивость и работоспособность двигателя, необходимо для того, чтобы облегчить его отработку. Случайные пульсации давления (нестационарное горение) обычно неблагоприятно отражаются на работе двигателя. Несколько случайных возмущений, наложившихся друг на друга, могут привести к неустойчивости. Колебания давления низкой частоты сопровождаются ухудшением стойкости стенки из-за уменьшения толщины пограничного слоя и более высоких коэффициентов теплопередачи. Нестационарное горение оказывает двойственное влияние на удельный импульс. Турбулизация, обусловленная волновыми процессами, улучшает смешение компонентов, т. е. улучшает полноту сгорания в камерах с малой приведенной длиной Поперечный поток, однако, смещая точки столкновения струй, может ухудшить вследствие этого степень распыления и понизить удельный импульс. Волновые процессы в камере интенсифицируют теплопередачу и уменьшают размер капель — в этом состоит их положительное влияние. Повышение начальной температуры компонентов топлива способствует повышению удельного импульса благодаря более высокой энтальпии, но иногда влияние температуры оказывается столь значительным, что получаемый эффект не может быть объяснен только энтальпией [68] возможно, сказывается улучшение распыливания за счет уменьшения поверхностного натяжения. Уменьшение коэффициента соотношения компонентов способствует повышению экономичности двигателя в случае внутрикамерного процесса, лимитируемого испарением горючего. В другом двигателе оно может вызвать снижение стойкости стенки из-за перетеканий, обусловленных дисбалансом количеств движения струй. [c.179]

    Хюттиг и Херман о использовали соотношение между давлением пара и диаметром капилляров, выведенное Кубелькой при изучении процесса дегидрации псевдоморфоз метакаолина (см. D. II, 14 и ниже). Таким образом, они объяснили явление адсорбции пара метанола на этих высоко дисперсных системах кремнезема и глинозема зависимостью от температуры во время предшествующей термической обработки. Кубелька и Прошка использовали аналогичный эффект переохлаждения расплавов в капиллярах геля кремнекислоты определенных диаметров и в качестве метода измерения поверхностного натяжения кристаллической фазы на ее границе с расплавом. На основе уравнения Томсона и снижения точки плавления благодаря влиянию капиллярного натяжения можно оценить степень переохлаждения, которая определяется тепловыми или, более точно, калориметрическими опытами. Величину osf можно вычислить, например, для воды и бензина. [c.289]

    Поскольку в литературе отсутствуют данные об изменении псвер.хностного натяжения водных растворов смоляных и жирных кислот, а также щелочного лигнина от их концентрации, нами были проведены такие исследования. Лигнин и суммарно смоляные и жирные кислоты были выделены из сточных вод и приготовлены водные растворы щелочного лигнина и натриевых солей кислот различной концентрации. Поверхностное натяжение разбавленных водных растворов щелочного лигнина и натриевых солей смоляных и жирных кислот (суммарно) определено методом максимального давления пузырька воздуха в приборе П. А. Ребиндера при 20° С. Как видно из приведенных данных (рис. 1), поверхностное натяжение водных растворов солей смоляных и жирных кислот с повышением их концентрации до 4,8 г/л (критическая концентрация мицеллообразования — ККМ) резко падает. Дальнейшее повышение концентрации мыл не оказывает влияния на поверхностное натяжение растворов. В сульфатном мыле смоляные и жирные кислоты содержатся в соотношении 1 1с небольшим отклонением в ту или другую сторону. Из жирных кислот главным образом содержится пальмитиновая кислота и в небольшом количестве олеиновая и лино-левая кислоты. Для всех этих кислот характерно линейное строение их молекул, причем длина их значительно превышает поперечные размеры. Смоляные кислоты представляют собой смесь, по составу близкую к абиетиновой кислоте. Все они имеют кольчатое строение, причем длина и поперечник молекул имеют одинаковые размеры. Имея различное строение, смоляные и жирные кислоты обладают и различными поверхностно-активными свойствами. Поверхностные свойства у смоляных кислот выражены несколько слабее, чем у жирных. Этим и следует объяснить, что ККМ смеси кислот достаточно высока. Критическая концентрация мицеллообразования водных растворов олеата натрия при 20° С составляет 1 г/л. Лигнин обладает очень слабой поверхностной активностью, ККМ лигнина составляет 10 г/л, при этом поверхностное натяжение растворов 66 дин см К [c.43]

    Дисперсность сажи (как и всякой аэрозольной системы) увеличивается с увеличением 5 (стр. 59). Значение пересыщения пара, выражаемое уравнением (1-1), с повышением температуры, с одной стороны, увеличивается благодаря повышению скорости образования паров углерода, а с другой—уменьшается вследствие повышения давления насыщенного пара углерода [уравнение (1.2)]. Поэтому функциональные зависимости 5 и (18от температуры могут иметь максимумы, т. е. дисперсность получаемой сажи достигает наиболее высокого значения при определенной (оптимальной) температуре. В настоящее время отсутствуют надежные данные о влиянии различных факторов на скорость образования сажи, поэтому получить уравнение для й81й1, учитывающее процесс образования пара углерода (и, следовательно, 5), скорость образования зародышей (поскольку отсутствуют данные о поверхностном натяжении углерода [c.203]

    Другой недостаток капиллярных вискозиметров — влияние поверхностного натяжения раствора и недостаточно точный учет приложенного давления. Переменный перепад давления, обусловленный собственным весом раствора, может быть скомпенсирован созданием противодавления. Это достигается с помощью двухкамерного маностата, представляющего собой хорошо регулируемую систему ртутных и водяных манометров и буферных емкостей. Вискозиметр в такой системе изолирован от атмосферы и оба конца его соединены с камерами маностата. Давление передается через воздух или инертный газ, содержащийся в буферных емкостях, которые погружены в тот же термостат, что и вискозиметр. Для работы при малых градиентах пользуются водяными манометрами, и с каждой стороны вискозиметра подают положительное давление. Та же маностатическая система может быть использована и для получения очень высоких градиентов в этом случае удобно комбинировать положительное и отрицательное давления у входа и выхода вискозиметра [174]. Не требующая пояснений схема подключения вискозиметра к мано-стату с помощью четырехходового крана приведена на рис. 2.21. [c.168]

    Влияние давления на процесс кристаллообразования обусловливается изменениями температуры фазового превращения, энергии активации и поверхностной межфазной энергии. При этом рост энергии активации с давлением связан с сопутствующим увелвгаением вязкости. С другой стороны, при повышенных давлениях наблюдается уменьшение поверхностного натяжения [76], обусловленное, видимо, уплотнением жидкости и приближением ее к стрз туре кристалла. Однако само повышение вязкости с ростом давления действует подобно понижению температуры. Иными словами, давление должно сдвигать кривую зависимости скорости зарождения кристаллов в сторону более высоких температур. Высказанные положения подтверждаются экспериментальными данными [76, 87]. [c.61]

    Таким образом, для образования униполярно заряженных аэрозолей при технических процессах используют две различные схемы. При первой из них распыление жидкости производится одним из рассмотренных выше механических способов (при истечении жидкости из отверстий под давлением, или в потоке воздуха, или при помощи вращающегося распылителя). После распыления жидкости (или порошка) заряд сообщается частицам посредством прохождения их через направленный поток ионов (в поле коронного разряда). При второй схеме само распыление производится с использованием не механических, а электрических сил (контактная зарядка, при которой жидкость контактирует с острой кромкой распылителя, находящейся под высоким напряжением на острой кромке происходит не только зарядка жидкости, но и дробление ее под действием электрических сил). Возможен и промежуточный способ, при котором электрические заряды наводятся на поверхность жидкой пленки перед ее распылением (индукционный способ) при этом электризация производится во время распыления, как и при контактном способе, но ее влияние на процесс распыления мало, и капли образуются главным образом в результате взаимодействия аэродинамических сил, сил поверхностного натяжения и вязкости, а электрические силы играют при этом второстепенную роль. [c.41]

    Влияния типа входа и свойств жидкости (вязкость и поверхностное натяжение) были исследованы Даклером и др. [19, 26] в горизонтальном аппарате (диаметр труб 25 и 75 мм) при комнатной температуре и атмосферном давлении. Градиент давления найден более высоким при всех прочих равных условиях, если газ входил со стороны Т-образного смесителя. В этом случае (см. разд. И. Б. 4, б) захват жидкости ядром потока был меньшим. Автор предположил, что большая доля энергии тратится на перенос жидкости в пленке, двигаюш,ейся по стенке, а не в ядре в виде маленьких капелек. Изменение вязкости жидкости от 1 до 17 СПЗ приводило к небольшому, но измеримому изменению перепада давления. Влияние этого параметра на сопротивление оказывается незначительным и зависит от величины весового расхода жидкости. С другой стороны, влияние поверхностного натяжения было найдено незначительным. Перепад давления из-за ускорения (или расширения), согласно уравнению количества движения, был более чем на 50% выше общ,его перепада давления, и авторы предположили, что большинство расхождений в результатах различных авторов может происходить из-за разного влияния этого члена, не всегда принимаемого в расчет. [c.214]

    Отсутствие узких каиалов во вращающемся сопле позволяет распыливать значительно более вязкую жидкость, чем в сопле под давлением. Влияние изменений вязкости, плотности и поверхностного натяжения ка размеры вращающегося сопла также не исследовано, но, вероятно, законы влияния этих переменных для вращающегося сопла иные, чем для сопла под давлением. Несомненно, однако, что высокая скорость, малая вязкость и малая производительность действуют в направлении образования мелких капель. [c.146]

    Наиболее существенной составляющей является С увеличением влажности увеличивается до определенного предела, а затем падает (при полном влагонасыщении тела, когда поры заполнены влагой, массообмен прекращается и ->0). Перемещение парообразной влаги при наличии градиента температур осуществляется благодаря разности парциальных давлений пара. При небольщих температурных градиентах миграция влаги является молекулярным процессом, а при значительных градиентах, что более вероятно для микроструктуры тела, миграция влаги является молярным процессом. Движение потока пара происходит от участков тела с более высокой температурой к участкам с пониженной температурой, где пар может сконденсироваться. Перемещение жидкой влаги вызывается разностью капиллярных потенциалов, которая, в свою очередь, порождается силами поверхностного натяжения менисков. Миграция жидкой влаги обусловлена градиентом влажности и движется она в обратном направлении движению потока парообразной влаги, от влажных мест к сухим. Таким образом, под влиянием теплового потока происходит концентрация жидкой влаги в менее нагретых слоях изоляции. [c.280]


Смотреть страницы где упоминается термин Поверхностное натяжение, влияние высокого давления: [c.31]    [c.495]    [c.72]    [c.399]    [c.153]    [c.153]    [c.177]    [c.21]    [c.142]    [c.73]    [c.508]   
Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние высокого давления

Давление поверхностное



© 2025 chem21.info Реклама на сайте