Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная связь между радикалом и растворителем

    Поскольку в гомолитических реакциях принимают участие как свободные радикалы, так и нейтральные молекулы, вопрос о роли среды в таких процессах следует рассматривать, учитывая возможность сольватации тех и других частиц в растворе. Подобное рассмотрение позволяет довольно четко выяснить основные закономерности специфической сольватации в радикальных реакциях [7]. На реакционную способность радикалов в гомолитических реакциях оказывает влияние не только сольватация атома, несущего неспаренный электрон, но и взаимодействие других атомов и функциональных групп радикала с растворителем. Учитывая существенное влияние полярности структуры радикала на его реакционную способность [37], образование комплексов с водородной связью между молекулой растворителя и функциональной группой радикала, расположенной вдали от реакционного центра (например. [c.364]


    Представляло интерес изучить несколькими методами и сопоставить ассоциацию кумил- и трет-бутилгидроперекисей, редко различающихся по природе радикала. В частности, имелось в виду получить дополнительный материал относительно слабой водородной связи между атомом водорода гидроперекисной группы и п-электронами бензольного кольца данную связь одна из изучавшихся гидроперекисей может образовывать не только с растворителем, но и внутримолекулярно. Для этих целей в данной работе применены криоскопические, калориметрические и спектральные измерения, а также метод изотопных эффектов в. [c.463]

    Некоторые данные, опубликованные в литературе, косвенно подтверждают предположение о роли водородной связи в процессе ингибирования. Так, при изучении реакции метильных радикалов с замещенными фенолами было установлено [85], что неэкранированные фенолы образуют между собой водородные связи в углеводородном растворе, что снижает их реакционную способность. На реакции взаимодействия трет.бутил-феноксильного радикала с нитрофенолами в разных растворителях сильно влияют ацетон и метиловый спирт, снижающие реакционную способность м- и и-нитрофенолов вследствие образования межмолекулярных водородных связей [86]. [c.270]

    Следует отметить именно водородная связь наиболее сильно влияет на ЭПР-спектры стабильных радикалов. Образование других комплексов (типа КПЗ) труднее заметить по изменению констант СТВ. или й -фактора. Однако в общем случае это зависит от типа радикала и степени смещения равновесия в сторону образования комплекса радикал — растворитель. Параметры спектров ЭПР ряда азотнокислых радикалов типа I и П практически не изменяются при замене инертных углеводородных растворителей ароматическими (см. табл. IX. 1), хотя не вызывает сомнения, что между радикалом и растворителем образуются л-комплексы, так как происходит изменение реакционной способности радикалов в различных реакциях (см. гл. IX, 3). Об этом свидетельствуют также данные УФ-, ИК- и ЯМР-спектроскопии. [c.360]

    Фактором, определяющим силу взаимодействия между двумя молекулами, возможно, даже более важным, чем водородная связь или электростатическое притяжение, является гидрофобное связывание [8,84]. Молекулы или части молекул, недостаточно сольватируемые водой, разрушают сеть водородных связей, составляющую структуру растворителя. Это разрушение снижается в случае сближения таких молекул, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой. Углеводороды, например, образуют отдельную вторую фазу, в то время как детергенты, обычно представляющие собой длннноце-почечные углеводороды с полярными группами с одного конца, образуют мицеллы [9]. Последние представляют собой шарообразные агрегаты молекул с заряженными концевыми группами на поверхности, сольватпрованными водой и с углеводородными цепочками внутри, в контакте только друг с другом. Маленькие неполярные участки или полости на поверхности белка также слабо сольватированы водой, однако они не контролируют состояния агрегации молекулы в целом. Эти участки могут, однако, взаимодействовать с гидрофобными молекулами или частями молекул близкого размера, соединяясь с ними, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой, как это указано выше. При обсуждении трехмерной структуры химотрипсина уже рассматривался пример такого рода (см. с. 488). Вблизи активного центра этого фермента располагается образованный гидрофобными группами карман [46], размер которого позволяет связыванию в нем индольного бокового радикала остатка триптофана. Сам индол прочно связывается в этом кармане (энергия связывания 60 кДж-моль ) [88]. Селективность действия химотрипсина в отношении той или иной пептидной связи в большой степени определяется комплементарно-стью соответствующего бокового радикала аминокислоты этому гидрофобному карману. [c.505]


    Общие выводы, которые можно предварительно сделать на основе ограниченного числа данных, доступных в настоящее время при свободнорадикальной полимеризации .а -дизамещенных мономеров (фактически единственным хорошо изученным мономером этого типа является метилметакрилат) для т-присоединения требуется энтальпия активации на 1 ккал/моль большая, чем для г-присоединения, но т-присоединение несколько предпочтительнее по энтропийному фактору. Для а-монозамещенных мономеров обычно предпочтительнее /--присоединение по величине изменения как энтропии [Д(Д5 ), однако, мало или равно нулю, если заместитель СМ- или ОАс-группа], так и энтальпии, хотя разность A AHf) не превышает 300 кал/моль и часто близка к пулю. Сольватация свободного радикала не имеет большого значения, поскольку конфигурация цепи, видимо, не зависит от выбора растворителя при полимеризации. (Возможно, однако, что существенное влияние может оказывать сильная водородная связь между мономером и растворителем, но экспериментально это не исследовалось). Короче говоря, единственной возможностью по вли-ять на конфигурацию при свободнорадикальной полимеризации винильных мономеров, доступной для экспериментатора, является изменение температуры. Однако даже в благоприятных случаях температура полимеризации слабо влияет на конфигурацию образующегося полимера. [c.164]

    Аналогично отчетливая зависимость констант расщепления СТС от полярности растворителя была найдена у семихинонов [56], анион-радикалов нитробензола [57] и феноксильных радикалов [58]. При этом изменение константы расщепления особенно велико при переходе от апротонных к протонным растворителям, так как сольватация радикалов обусловлена, очевидно, преимущественно водородными связями между растворителем и функциональными группами радикала. ПерераспределениеспИ новой плотности можно объяснить тем, что электроотрицательность атома-акцептора водородного мостика, обладающего неподеленной парой электронов, зависит от растворителя. Расчеты по этой модели для семихинонов дали хорошее совпадение вычисленных и экспериментальных констант расщепления СТС [59]. [c.109]

    Значительная разница между растворяющей способностью растворителей, обладающих одинаковым неполярным углеводородным радикалом, таких, как фенол, анилин, нитробензол, объясняется не только различием величины дипольного момента, но и разной способностью молекул этих растворителей к ассоциации. Фенол и анилин, имеющие в своем составе электроотрицательные атомы (О, Н), а также водородные атомы, связанные с ними и способные образовывать водородную связь, являются при обычных температурах в значительной мере ассодищюванными. Все это приводит к снижению растворяющей способности этих растворителей с сравнении, например, с нитробензолом. Ввиду отсутствия атома, способного образовать водородную связь, можно ожидать слабую ассоциацию молекул нитробензола. Слабая ассоциация молекул последнего при наличии высокого дипольного момента и углеводородного радикала обеспечивает высокую растворяющую способность этого растворителя. [c.171]

    Влияние природы растворителя на спектр ЭПР может быть объяснено механизмом [136], учитывающим возникновение слабых обменных взаимодействий при столкновении молекул в растворе. При сближении двух парамагнитных частиц обменное взаимодействие между ними может вызвать нарушение фазы ларморовых вращений спинов вокруг внешнего магнитного поля. В работах [ 137 -139] показано, что в полярных растворителях ширина сверхтонких компонент меньше, а константа сверхтонкого расщепления больше, по сравнению со значениями констант в неполярных растворителях. Этот эффект приписан возникновению комплексов радикал — растворитель. Образование комплексов свободный радикал — растворитель может быть обусловлено различными причинами, в частности водородной связью [ 138]. В ряде случаев возможно также образование молекулярных комплексов с растворителем, акцепторами, ионами металлов. Последние нередко приводят к стабилизации ион-радикалов [140, 141]. Авторы [141] считают, что молекулы растворителя локализуются на полярных заместителях или гетероатомах. [c.120]

    Для растворителей, специфическим образом взаимодействующих с нитроксильными радикалами, зависимость между электрон-но-спиновыми параметрами радикального фрагмента и характеристиками среды, естественно, более сложная, чем разобранная выше. Так, например, в случае воды, которая входит как составная часть во многие системы, исследуемые методом спинового зонда, и которая соответствует практически максимально возможным значениям а нитроксильных радикалов (см. табл. 1.3), зависимость между а и е, представленная на рис. 1.5, удовлетворяется лишь качественно [для водного окружения радикала СИ (13,2) величина а = 15,6 гс при комнатной температуре [45], тогда как по зависимости рис. 1.5 она должна составлять 14,6 гс]. Резкое увеличение а в этом случае обусловлено тем, что NO-rpynna радикала образует водородную связь с молекулами воды. Это приводит к существенному изменению равновесия между структурами А и Б радикального фрагмента (1.10) в пользу структуры Б, характеризуемой более электроотрицательным атомом кислорода. [c.22]


    ДМСО > ТГФ, основной причиной которого служит уменьшение отношения kp/f > [8]. Значительные различия в величинах kp/f > при полимеризации этих мономеров отмечены и для ряда других растворителей (формамид, диоксан) и их смесей с водой [5, 52, 128]. Отмечено, что добавки небольших количеств воды к раствору АА в ДМСО позволяют заметно повысить скорость полимеризации и вязкость растворов полимеров [52, 129]. В случае же полимеризации N, N-ди-метилакриламида добавки воды не оказывают заметного влияния на скорость образования полимера в среде этанола [128]. Предположено [130, 131], что роль воды при полимеризации АА связана с сольватацией его растущих цепей, ограничением столкновений между растущими макрорадикалами и обрывом цепи. Изменение состава смеси вода-ДМСО оказывает сильное влияние на значение кинетических параметров полимеризации АА (табл. 2.4), причем наблюдается более значительное уменьшение кр, чем кц, с увеличением доли ДМСО в реакционной смеси. Более высокие значения кр в водных растворах свидетельствуют о большей реакционной способности в них акриламидного радикала, а также меньшей степени автоассоциации мономера. В растворах ДМСО сольватация молекул АА ниже, чем в воде, в связи с чем мономер в них существует в виде ассоциатов, на разрушение которых при полимеризации затрачивается дополнительная энергия, что выражается в увеличении энергии активации роста цепи при переходе от водных растворов к растворам в ДМСО. Согласно [125], в твердом состоянии АА существует в виде димера. В водных же растворах, вследствие образования водородных связей с водой, димер распадается на молекулы. В то же время в формамиде и ДМСО АА в некоторой степени димеризуется, на что указывают теплоты растворения, равные -12,2, -10,5 и -4,6 кДж/моль в воде, формамиде и ДМСО соответственно и характеризующие степень разрыва водородных связей в димере. [c.42]

    При исследовании методом ЭПР стабильных органических радикалов в жидкой фазе было найдено, что сверхтонкое взаимодействие в этих радикалах существенно зависит от растворителя. Причиной изменения константы СТВ при замене растворителя является дополнительная делокализация неспаренного электрона по радикалу и лиганду, обусловленная сольватацией. Попытки связать изменение констант СТВ с полярностью растворителей в общем следует считать неудачными, хотя неоднократно наблюдались определенные корреляции между константами СТВ и е среды [24] или дипольными моментами растворителя [25]. Для некоторых фе-ноксильных, нитроксильных и других радикалов найдена линейная зависимость между константами СТВ и fis, которая не соблюдалась лишь в растворителях, способных к образованию водородной связи с атомом радикала, несущим неспаренный электрон. Можно указать также на попытку связать изменение констант СТВ радикалов с эмпирическими характеристиками полярности растворителей, в частности с параметрами Z Косовера [26]. [c.358]

    Определенную информацию о механизме специфического взаимодействия между радикалом и растворителем можно получить, как уже отмечалось, из данных ЯМР. Так, образование сольватированных за счет водородной связи радикалов легко наблюдать по появлению в спектрах ЯМР парамагнитных сдвигов протонов молекул растворителей [23]. Появление изотропного СТВ неспаренного электрона с ядрами молекул растворителя является результатом делокализации неспарённого электрона радикала при его комплексообразовании с растворителем. [c.362]

    Как уже отмечалось, образование сольватных комплексов между растворителем и молекулами реагента, с которым взаимодействует свободный радикал, также приводит к снижению наблюдаемой константы скорости реакции. Аналогичные эффекты имеют место и при наличии в системе автоассоциатов реагирующих молекул, образующихся обычно за счет водородной связи. В частности, показано [59], что в реакции метильных радикалов со спиртами, протекающей путем отрыва атома водорода от гидроксильной группы, реакционноспособными оказываются только мономерные молекулы спирта. Автоассоциация в инертной среде, зависящая от концентрации спирта в системе, замедляет скорость замещения. [c.371]


Смотреть страницы где упоминается термин Водородная связь между радикалом и растворителем: [c.58]    [c.70]    [c.31]    [c.216]    [c.362]   
Кинетика реакций в жидкой фазе (1973) -- [ c.362 , c.363 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь

связи растворителей



© 2025 chem21.info Реклама на сайте