Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойная спираль правая

    Двойная спираль обычной ДНК состоит из двух взаимно перевитых полинуклеотидных цепей, азотистые основания которых попарно соединены водородными связями. Аденин (А) одной цепи связан с тимином (Т) другой, а гуанин (Г) с цитозином (Ц). Схемы этих пар (уотсон-криковские пары) показаны на рис. 8.5. Таким образом, две цепи ДНК взаимно комплементарны, т.е. имеется однозначное соответствие. между их нуклеотидами. Это соответствие раскрывает смысл правил Чаргаффа (см. стр. 89). [c.492]


    Что касается вторичной структуры, то наш И сведения относятся в большей степени к ДНК. Две макромолекулы этой кислоты образуют двойную спираль с правым направлением вращения, причем азотистые основания каждой макромолекулы направлены внутрь двойной спирали и связаны друг с другом водородными связями. Такая структура называется по имени первооткрывателей моделью Уотсона — Крика. Оба ученых совместно с Уилкинсом были удостоены за это открытие Нобелевской премии 1963 г. [c.218]

    Приведенные экспериментальные данные относятся к обычно исследуемой в растворе линейной, незамкнутой ДНК. У вирусов, а также в клетках бактерий на некоторых стадиях их развития обнаруживается кольцевая замкнутая форма ДНК. В такой ДНК, представляющей собой обычную двойную спираль, каждая из комплементарных нитей является непрерывной замкнутой на себя. Поэтому полное число оборотов одной нити относительно другой не может меняться ни при каких изменениях условий, сохраняющих целостность сахаро-фосфатного остова обеих нитей. Проведенные исследования показали, что при комнатной температуре двойная спираль кольцевой ДНК закручена как целое в суперспираль (с плотностью один виток суперспирали на 120—300 пар оснований) противоположного знака, т.е. в левую. При нагревании происходит тепловое расширение кристалла ДНК и уменьшение степени закрученности двойной спирали. Это приводит к уменьшению суперспирализации. При дальнейшем нагревании происходит раскручивание двойной спирали и образование суперспирали того же знака (правой). Иными являются и характеристики плавления кольцевой замкнутой ДНК. Температура плавления такой ДНК приблизительно на 20° выше, чем для линейной молекулы (см. рис. 4.6). Это происходит потому, что расплавленные нити в кольцевой молекуле остаются закрученными относительно друг друга и энтропия расплавленного состояния меньше, чем для линейной молекулы. Кроме того, ширина интервала плавления замкнутой кольцевой ДНК в 2—3 раза больше, чем ширина интервала плавления линейной молекулы. [c.75]

    ПОЛИ (и)] существуют только в правой А-форме, в основных чер тах подобной А-форме ДНК. В то же время принципиально возможно существование и левых двойных спиралей РНК (2-РНК). [c.37]

    Интересно и важно для дальнейшего, что спираль оказалась двойной две цепи с одинаковым направлением гликозидных связей тесно связаны водородными связями и закручены в правую спираль с шагом 26 А. Такая двойная спираль является довольно устойчивым образованием. Геометрические параметры каждой отдельной цепи диктуются конформацией повторяющегося звена 19 и хорошо обосновываются теоретическими методами современного конформационного анализа полимеров. Шаг этой спирали достаточно велик, так что между соседними витками остается большой промежуток ( пружина сильно растянута). В этот промежуток точно укладываются витки второй спирали причем таким образом, что между соседними остатками из двух разных цепей возникают водородные связи, поддерживающие стабильность всей конструкции. [c.166]


    В виде право- и левовинтовых лестниц соответственно. Эти две структуры могут выполнять полезные функции. Однако двойная спираль ДНК, содержащая как 0-, так и Ь-нуклеотиды, не могла бы вообще иметь истинно спиральную форму, так как при зтом менялось бы направление закручивания. Это явление Оргел поясняет на примере аналогичной винтовой лестницы, показанной на рис. 2-65. [c.77]

    На рис. IX.22 изображена сверхспирализованная молекула ДНК, у которой двойная спираль правая, а сверхспирализация отрицательная (сверхспираль левая). [c.224]

    Все генетические приказы , отдаваемые клетке, исходят от ДНК-Молекулы как ДНК, так и белков построены в виде цепочек, состоящих в первом случае из нуклеотидов, а во втором —из аминокислот. Молекулы ДНК, как правило, двухцепочечные, т. е. состоят из двух образующих двойную спираль полинуклеотидных цепочек комплементарные основания противоположных цепочек образуют нуклеотидные пары (рис. 2-21). В настоящее время твердо установлено, что большая часть генетических сообщений в ДНК представляет собой последовательность кодовых слов , или кодонов. Каждый кодон состоит из трех нуклеотидов (или трех нуклеотидных пар, если ДНК двухцепочечная) и соответствует одной из 20 аминокислот, из которых построены белки. Последовательность кодонов в ДНК определяет, в каком порядке должнь соединяться аминокислоты при синтезе каждого из многочисленных белков. [c.18]

    На устойчивость двойной спирали в растворе влияют многочисленные факторы. Образование упорядоченных структур является экзотермическим процессом, и поэтому спирали стремятся расплавиться при повышении температуры растворов ДНК. Из числа сил, стабилизующих нативную форму, водородные связи и диполь-дипольные взаимодействия между пуриновыми и пиримидиновыми остатками, упакованными в двойную спираль [344], должны приводить к выделению тепла. В то же время следует ожидать, что гидрофобное взаимодействие будет эндотермическим. Значение гидрофобного взаимодействия иллюстрируется тенденцией водных растворов ДНК к денатурации при добавлении органических растворителей с большими неполярными остатками [345]. Как и следовало ожидать, высокая плотность заряда, обусловленная ионизованными фосфатными остатками, расположенными вдоль цепи ДНК, обусловливает неустойчивость спиральной конформации. В результате этого добавление умеренных количеств электролитов должно стабилизовать нативную форму ДНК, что и было обнаружено при добавлении таких солей, как галогениды щелочных или щелочноземельных металлов [346, 347]. Если определить температуру плавления (Г ) как температуру, при которой изменения в спектре, характеризующие денатурацию, происходят на 50%, то Т- , по-видимому, будет иметь примерно линейную зависимость от логарифма концентрации катионов щелочных металлов. В типичном случае повышается от 36 до 82° при увеличении концентрации ионов натрия с 0,0003 до 0,1 н. Увеличение концентрации соли приводит также к сужению интервала температур, в котором происходит переход спираль — клубок. В отношении стабилизации спиральной конформации особенно эффективны некоторые двухвалентные иопы, образующие специфические комплексы с фосфатными группами основной цепи ДНК (например, Mg +). Нуклеиновая кислота как бы образует стехиометрические комплексы с этими катионами, причем Тт таких комплексов высока даже при очень слабой ионной силе. При всех условиях переход спираль — клубок происходит в удивительно узком температурном интервале, причем 90% изменений, как правило, происходит в интервале менее 10°. [c.127]

    Что же можно сказать о вторичной структуре нуклеиновых кислот Приведенная ниже картина находится в соответствии как с химическими данными, так и с результатами рентгеноструктурного анализа. Две полинуклеотидные цепи, идентичные, но ориентированные в противоположном направлении, закручены друг относительно друга в двойную спираль, имеющую диаметр 18 А (1,8 нм) (схематически показана на рис. 37.8). Обе спирали являются правыми и содержат по 10 нуклеотидов на один виток. [c.1062]

    Представление о строении нуклеиновых кислот нуклеозиды и нуклеотиды. Гетероциклические основания рибоза (дезоксирибоза) и фосфорная кислота как структурные единицы нуклеиновых кислот. Представление о строении РНК и ДНК. Биологические функции ДНК и РНК. Рибосомная, информационная и транспортная РНК. Связь между строением и биологическими функциями нуклеиновых кислот. Строение РНК. Двойная спираль как модель молекулы ДНК. Роль водородных связей аденин — тимин и гуанин — цитозин в образовании двойной спирали. Правило Чаргаффа. Проблема передачи наследственной информации. Вещество, энергия и информация — необходимые компоненты при синтезе белка. Генетический код как троичный, неперекрывающийся, вырожденный код. [c.189]

    Рис. 2.15. функционирование ДНК-полимераз. Двойная спираль ДНК состоит из двух полинуклеотидных цепей противоположной полярности (они антипа-раллельны ). Если свободная , не связанная с соседним нуклеотидом З -ОН группа находится у одной цепи на левом конце, то в другой цепи такая же группа находится на правом конце. Репликация ДНК катализируется ДНК-полиме-разами. Для функционирования такого рода ферментов необходимы 1) матрица, которая представляет собой одиночную цепь ДНК, 2) праймер-короткий отрезок реплицированной нуклеиновой кислоты и 3) смесь дезоксинуклеозид-5 -трифосфатов. ДНК-полимеразы способны присоединять свободные нуклеотиды только к свободному З -ОН-концу нуклеотидной цепи. Таким образом, синтез протекает только в направлении 5 - 3, но не наоборот. [c.39]


    Опираясь на данные рентгеноструктурного анализа, полученные Уилкинсом, й на правила Чаргаффа, а также широко используя метод построения моделей, Уотсон и Крик в 1953 г. предложили для В-формы ДНК двухцепочечную модель. Согласно их представлениям, молекула ДНК представляет собой двойную спираль, образованную двумя антипараллельными цепочками. Шаг спирали равен 34 А на один ее виток приходится 10 остатков в каждой цепочке. Фосфатные группы расположены на наружной стороне спирали на расстоянии 9 А от ее оси, [c.313]

    Недавно предложенная [14, 15] для А- иВ-амилозы кристаллическая структура состоит из параллельно скрученных правых двойных спиралей (рис. 15.5), упакованных антипараллельно. Каждый виток спирали содержит шесть остатков а-Е)-глюкозы, находящихся в стабильной конформации Сь Орторомбическая элементарная ячейка А-амилозы имеет следующие параметры  [c.263]

    Ватсон и Крик [483] считают, что молекула дезоксирибонуклеиновой кислоты представляет собой двойную спираль, в которой две спиральные цепи закручены вокруг общей оси. Обе цепи соответствуют правым спиралям, однако последовательность чередования остатков в двух цепях изменяется в противоположных направлениях, как показано на рис. 180. [c.365]

    На рис. 129 представлена спаренная двойная спираль ДНК, которая ферментом экзонуклеазой частично разъединяется, и разъединенные концы при действии фермента полимеразы достраиваются за счет комплементарных нуклеотидов из среды, сшиваемых в цепь (заштрихованные участки правой спирали) (Корнберг). В последние годы открыта также лигаза — фермент, сшивающий фосфорнокислыми мостами два соседних, закрепленных на матрице олигонуклеотида (рис. 130). Затрата энергии покрывается [c.734]

    В поле Зрения зрительной трубы (правый окуляр) имеется перекрестие. Зрительную трубу III можно поворачивать вокруг оси лимба 8. Для грубой наводки следует ослабить винт и поворачивать зрительную трубу на нужный угол. Точная наводка перекрестия на верхнюю границу спектральной линии осуществляется микровинтом. При точной наводке винт должен быть ввернут. В зрительной трубе помещается призма 6, которая служит для определения нуля шкалы прибора. Призма 6 освещается через систему призм лампочкой 7. Для отсчета угла поворота зрительной трубы имеется лимб 8 со спиральным окулярмикрометром 9. Шкала спирального окуляр-микрометра освещается лампочкой 7. Для отсчета угла наклона зрительной трубы необходимо маховичком, расположенным в нижней части окулярмикрометра, повернуть диск с двойными спиралями до совмещения штриха градусного деления с двойной спиралью, как это показано на рис. 44. Отсчет угла установки будет 12,2725° (рис. 45). [c.87]

    Правый микроскоп является отсчетным. Он жестко установлен на стойке станины и направлен на миллиметровую шкалу, нанесенную на матовом стекле и жестко скрепленную со столиком компаратора. Шкала освещается снизу зеркальцем. В поле зрения микроскопа видны вертикальные штрихи с цифрами вверху (рис. 50). Это — увеличенное изображение миллиметровой шкалы. Далее имеется горизонтальная шкала с десятью делениями и круглая шкала в левой части поля зрения окуляра. Эта шкала поворачивается при вращении маховичка справа на головке отсчетного микроскопа. Она имеет 100 делений. Для отсчета необходимо вращением маховичка добиться, чтобы штрих миллиметровой шкалы располагался между линиями двойной спирали, как показано на рис. 50. После этого производится отсчет. Записывается число целых миллиметров, десятые доли миллиметра отсчитывают на горизонтальной шкале отсчетного микроскопа. Записывается число слева от штриха миллиметровой шкалы, который был совмещен с двойной спиралью. [c.95]

    Обычно сверхспирализованные молекулы принимают форму, показанную на рис. 23. Количественно сверхспирализация характеризуется величиной х = Ьк — N у . Подобно тому как самой двойной спирали приписывается определенный знак (положительный для правой спирали и отрицательный для левой), так и сверхспирализация может в принципе быть положительной или отрицательной. На рис. 23 двойная спираль правая, как и положено для ДНК, а сверхспирализация отрицательна. [c.91]

    Эти эффекты становятся еще ббльшими, если перейти к полимерным молекулам, несущим большое число зарядов, например к нуклеиновым кислотам. Прочность комплексов в этом случае может изменяться на несколько порядков при изменении ионной силы раствора. Например, двойная спираль ДНК есть комплекс двух отрицательно заряженных полимерных анионов нуклеиновой кислоты. Поэтому для существования ДНК в виде двойной спирали нужно, чтобы ионная сила раствора не была бы слишком низкой. Конечно, говоря о таких огромных молекулах, можно рассуждать лишь качественно, так как использовать уравнение Дебая — Гюккеля, выведенное для точечных зарядов, мы не имеем права. [c.231]

    Прежде всего, в 5S РНК 5 -концевой участок цепи комплементарен З -концевому участку и образует с ним прочную длинную двойную Спираль из 9—11 пар нуклеотидов (спираль I). Вся внутренняя нуклеотидная последовательность укладывается в две составные шпильки. Одна составная шпилька четко разделяется на два двуспиральных участка — собственно шпильку из 6 пар нуклеотидов с большой торцевой петлей из 11—13 остатков в районе 40-го нуклеотида (спираль Ш) и двуспиральный участок из 7—8 нуклеотидных пар (спираль 11), соединенный с предыдущей спиралью некомплементарным районом. Другая составная Шпилька с маленькой торцевой петлей из 2- нуклеотидных остатков представляет собой почти непрерывную двойную спираль, но, как правило, содержащую несколько дефектов, таких как неканонические пары, выпетливающиеся нуклеотидные остатки и, часто, неспаренные нуклеотиды в середине поэтому она обычно может быть разбита на две подспирали (спираль IV и спираль V). [c.83]

    РНК, рибонуклеиновая кислота. Биологический полимер, очень близкий к ДНК по своему химическому строению. Способен образовывать двойную спираль, но в природе, как правило, существует в виде одиночной нити. У некоторых вирусов является носителем генетической информации, т. е. подменяет ДНК. В клетке генетической ролн не играет. Играет важную роль при передаче информации от ДНК к белку. По выполняемым функциям различают три типа РНК информационная или матричная (мРНК), рибосомальная (рРНК) и транспортная (тРНК). [c.158]

    Двойные спирали ДНК в Л-, В- и С-формах — правые. Позднее Рич и сотрудники открыли левую двойную спираль ДНК. Так как она зигзагообразна, эта форма была названа Z-формой. Впервые Z-форма была получена для двуспиральпых гексамв-ров ГЦ  [c.225]

    В работе [46] исследо-довалась двуспиральная Поли-дезоксиИЦ (И — инозин). Рентгенограммы Ыа-соли при 75% о. в. и спектры КД указывают на необычную конформацию спирали — возможно левую, в отличие от всех известных двойных спиралей, с восемью мономерами на каждый оборот. Не исключено, однако, что здесь фигурирует все же правая спираль, но в иной конформации. Недавно было показано, что вывод о левой спирали ошибочен [193]. [c.500]

    Описание последовательности нуклишовой кислоты отображает её первичную структуру. Расположение длинной линейной полинуклеотидной цепи в пространстве отражается в её вторичной структуре. Вторичные структуры ДНК и РНК различны. Согласно модели Уотсона и Крика, в молекулах ДНК полинуклеотидная цепь спирализов а в правую спираль с периодом идентичности 3,4 нм и расстоянием между плоскостями оснований 0,34 нм. Две цепи сплетены друг с другом в закрученную вокруг одной оси двойную спираль так, по на каждый виток спирали приходится 10 пар оснований диаметр спирали равен 2,0 нм. Обе цепи удерживаются друг около [c.116]

    Циклические ДНК и суперспирализация. Многие двухцепочечные ДНК в природе являются циклическими плазмиды, ДНК митохондрий и хлоропластов, ДНК многих вирусов и бактерий. Такие ДНК. как правило, существуют в суперспиральном состоянии. При этом двойная спираль закручивается сама на себя, как показано на рисунке 196, количество витков образующейся суперспирали зависит от внешних условий. Суперспирализация циклических ДНК приводит к сильному изменению физических свойств молекулы, в особенности гидродинамических и электрофоретических. В клетках суперспирализация осуществляется особыми ферментами, которые для бактерий сравнительно хорошо изучены и называются ДНК-гнразами (или топоизомеразами И). Другие ферменты — топоизомеразы 1 — могут уменьшать число супервитков в кольцевых молекулах, давая набор изомеров с различным числом витков. [c.341]

    Правило 2), как и аналогичное правило в случае полипептидной цепи, означает, что свободная энергия последовательности связанных мономерных единиц пропорциональна числу связанных единиц без учета влияния концов последовательности. которое учитывается правилами 3) и 4) и определяет кооперативность системы. Величина АН, определяющая температурную зависимость константы равновесия 5, включает в себя выигрыши энергии при замене водородных связей нуклеотид — растворитель на водородные связи нуклеотид— нуклеотид и растворитель — растворитель (ср. 23. стр. 299) и при укладывании пары связанных оснований над предыдущей парой за счет энергии их взаимодействия. С другой стороны, эта величина включает в себя проигрыш энергии за счет увеличения энергии отталкивания отрица-те 1ьг1ых Зарядов фосфатных групп ) при уменьшении расстояний между ними в результате скручивания цепей в двойную спираль. Величина Д5 включает в себя уменьшение энтропии при потере конформационных степеней свободы в паре связываемых мономерных единиц. Как показывает опыт, для всех нуклеиновых кислот з 1ачения АН и отрицательны. Отметим, что, поскольку молекулы нуклеиновых кислот практически всегда заряжены, то изменение состояния растворителя при переходе спираль — клубок (ср. 22) должно включать в себя изменение свободной энергии противоионов. В результате, константа равновесия для перехода спираль — клубок в нуклеиновых кислотах оказывается зависящей от ионной силы раствора. [c.359]

    Если исходная линейная молекула уже спирализована по правовинтовому типу и после замыкания в цикл при изменении условий число правых витков увеличивалось, так что [р] > [а], то ось молекулы должна образовывать либо левовинтовую тороидальную, либо правовинтовую самозакручивающуюся сверхспираль с числом витков, равным числу вновь образованных витков двойной спирали [т] = [сб]-[р]. При уменьшении числа витков двойной спирали после циклизации получились бы сверхспирали противоположного направления. Если условиться считать величины аир положительными для правовинтовых двойных спиралей, то число и направление витков сверхсинрали задаются простой формулой т = а р. [c.258]

    В структуре китита характерно наличие двойных спиралей тетраэдров [Si04l. Здесь имеются два различных по положению типа тетраэдров [SiOi], как и в кварце следовательно, китит должен быть оптически право- и левовращающим. Предполагается наличие двойников. Подробное исследование структуры китита [c.118]

    ДНК, комплементарного к цепи 50 первых нуклеотидов т-РНК аланина иллюстрируется на рис. 128. Синтезируются четыре цепи нуклеотидов изображенные в верхней части рисунка горизонтальными линиями. Каж дая из четырех цепей содержит по 20 нуклеотидов. Цепи построены так что верхняя правая линия соответствует 20 нуклеотидам ДНК, компле ментарньш к первым 20 нуклеотидам т-РНК аланина, верхняя левая линия соответствует двадцати следующим. Две нижние горизонтальные линии верхней части рисунка символизируют также отрезки ДНК по 20 нуклеотидов каждый, из них 20 - - 10 нуклеотидов комплементарны к соответствующим 30 нуклеотидам двух верхних цепей. В целом получается жестко связанная 30 парами комплементарных нуклеотидов система четырех цепей ДНК со свободными концами по 10 нуклеотидов в верхней и в нижней цепи. Имеются два разрыва фосфатных связей, отмеченные стрелками. Действием фермента лигазы эти разрывы зашиваются , и на их месте возникают фосфатные мосты. Таким образом, четыре первоначально взятых полинуклеотида превращаются в две цепи, в средней части комплементарно связанные друг с другом. Осталось с помощью полимеразы и набора свободных нуклеотидов комплементарно достроить оба свободных конца молекулы, и двойная спираль из 50 полинуклеотидов готова. Одна из ее цепей комплементарна к 50 первым нуклеотидам т-РНК, другая — комплементарна к первой. [c.695]

    Сегодня двойная спираль ДНК вместе с изображенибкм клетки стала универсальным символом всего живого. Ее универсальность, пожалуй, даже идеализируют, отчасти из-за необычайного изящества, невероятной элегантности ее структуры. На самом деле условия, в которых молекулы ДНК существуют и проявляют свои удивительные (до сих пор) свойства, весьма тяжелы. Как правило, в клетке они сжаты так, что утрачивают свою завораживающую форму и выглядят скорее бесформенными образованиями, которые к тому же еще и постоянно испытывают на себе воздействие генов. [c.13]

    Пионерская работа Уилкинса и Франклин показала, что молекулы ДНК могут давать различную дифракционную картину в рентгеновских лучах в зависимости от содержания воды и солей. Модель, предложенная Уотсоном и Криком, соответствовала значениям параметров структуры, полученным на основе рентгенограммы так называемой В-формы ДНК, изображенной на рис. 4.9. Модель В-формы ДНК, представленная на рис. 4.12, характеризуется плоскопараллельным расположением пар нуклеотидных оснований внутри двойной спирали. Плоскости оснований почти перпендикулярны оси спирали и отстоят друг от друга на 3,4 А. Этой повторяющейся единице соответствуют яркие меридиональные дуги в верхней и нижней частях рентгенограммы, изображенной на рис. 4.9. Диаметр спирали почти в точности равен 20 А, а соседние пары нуклеотидных оснований повернуты друг относительно друга на 36°. В результате на один виток спирали приходится десять пар оснований. На рисунке изображена спираль с правым направлением вращения. Рентгенограмма ДНК, однако, не дает информации, достаточной для того, чтобы судить, является спираль правой или левой. При построении своей модели Уотсон и Крик выбрали направление вращения произвольно. [c.113]


Смотреть страницы где упоминается термин Двойная спираль правая: [c.111]    [c.64]    [c.28]    [c.28]    [c.37]    [c.148]    [c.148]    [c.108]    [c.159]    [c.261]    [c.256]    [c.182]    [c.291]    [c.341]    [c.227]    [c.120]    [c.64]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.27 , c.28 , c.32 ]

Молекулярная биология (1990) -- [ c.27 , c.28 , c.32 ]




ПОИСК







© 2025 chem21.info Реклама на сайте