Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фоторецепторные структуры глаз

    У трех крупных групп животных (членистоногие, моллюски и позвоночные) возникли хорошо сформированные глаза, хотя анатомия и путь эволюционного развития зрения у них совершенно различны. Поэтому удивительна почти полная идентичность фотохимии зрительного процесса у всех трех групп животных. В каждом случае зрение связано с фотохимическим превращением пигмента, родственного витамину А (ретинолу) (рис. 8.11). Мы в основном будем рассматривать фотохимию именно этого типа, хотя необходимо обсудить и фоторецепторные структуры глаза, поскольку они на нее влияют. [c.236]


    Фоторецепторные структуры были найдены в эпифизе земноводных. Аналогичные структуры были обнаружены в родственных органах рептилий — в так называемом лобном органе и в теменном глазу . Рецепторные клетки этих структур, по крайней мере внешне, сходны с фоторецепторами сетчатки и связаны с мозгом нервами. Природа пигментов в фоторецепторных структурах пока не выяснена. [c.380]

    Структура фоточувствительной сетчатки более подробно показана на рис. 9.2. Сетчатка содержит ряд плотноупакованных фоторецепторных клеток свет достигает их, пройдя через сеть нервных клеток. Сетчатка включает рецепторные клетки двух типов — палочки, которые в сетчатке человека имеют размер - 28 мкм в длину и 1,5 мкм в диаметре, и суживающиеся к концу более короткие колбочки. Некоторые животные имеют палочки нескольких типов существуют и двойные колбочки. Число фоторецепторных клеток в сетчатке огромно. Так, например, число палочек в сетчатке глаза крысы оценивается по крайней мере в 15 миллионов. [c.299]

    Глазное яблоко по форме представляет собой примерно сферическую структуру диаметром около 24 мм и массой 6—8 г. Оно расположено в углублении черепа, называемом глазницей, и удерживается там четырьмя прямыми и двумя косыми мышцами, которые управляют его движениями. Основная часть глаза состоит из вспомогательных структур , пропускающих свет к фоторецепторным клеткам, образующим самый внутренний слой сферы — сетчатку. Она окружена сосудистой оболочкой, переходящей спереди в ресничное тело и радужку со зрачком. Наружный слой глазного яблока — фиброзная оболочка — подразделяется на роговицу и склеру (рис. 17.33). Непосредственно за зрачком расположен хрусталик. Внутренняя часть сферы занята стекловидным телом и так называемой водянистой влагой, которые создают внутриглазное давление, близкое к 3,3 кПа. [c.321]

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]


    Правильное химическое название витамина А — ретинол. Он обнаружен в продуктах животного происхождения. Пигмент каротин (оранжевого цвета), присутствующий в моркови, и схожие пигменты, называемые каротинами, часто встречающиеся в растениях, могут преобразовываться в витамин А в процессе пищеварения. Структура каротинов и витамина А особенно хорошо адаптирована для поглощения света, как в растениях в форме каротинов, так и у животных, у которых витамин А превращается в светопоглощающую молекулу ретиналь. Три группы животных, у которых имеются глаза (моллюски, членистоногие и позвоночные), используют ретиналь в качестве светопоглощающей части фоторецепторных молекул. Свет вызывает довольно большие изменения в структуре ретиналя, достаточные для генерации нервного импульса. [c.326]

    Улитки, раки, многие насекомые, птицы, представители всех групп позвоночных, кроме млекопитающих, воспринимают свет как самый сильный синхронизатор биоритмов не только органами зрения, но и головным мозгом. У многих видов организмов пейсмекеры, выполняющие функцию циркадианных часов, могут иметь строго определенную локализацию. У таракана эндогенный источник ритма описан, например, в зрительных долях мозга, у моллюска-аплизии - в глазах, у крыс, хорьков, хомячков - в супрахиазменных ядрах гипоталамуса, т. е. в структурах, связанных с восприятием света. Местонахождение осциллятора у птиц не выяснено. Возможно, он находится в вентромедиальной области гипоталамуса. Имеются данные, что фоторецепторным органом у воробьиных птиц является эпифиз. В эпифизе могут быть сосредоточены фоторецепторы у ящериц, некоторых других пресмыкающихся и рыб (Hoffmann, 1970). [c.21]

    Фоторецепторные клетки — палочки и колбочки сетчатки глаза — осуществляют трансформацию энергии света в электрическую форму нервных импульсов, поступающих в аксоны зрительного нерва. Все фоторецепторные клетки позвоночных организованы практически однотипно. Они представляют собой вытянутые структуры, содержащие, как правило, несколько сотен одинаковых светочувствительных компонентов — параллельно расположенных дисков, которые собраны в строго упорядоченные стопки. Каждый диск — это уплощенный мешочек, образованный замкнутой бислойной белково-липидной мембраной. Около 80 % мембранных липидов составляют фосфолипиды, среди которых преобладают фосфатидилэтаноламин и фосфатидилхолин. В фоторецепторной мембране очень велико содержание по-линенасыщенных жирных кислот. [c.64]

    Только у трех типов животных-моллюсков, членистоногих и позвоночных - глаза способны отображать образ предмета. Анатомически глаза этих трех типов устроены совершенно по-разному и, по-видимому, в ходе эволюции возникли независимо. Однако во всех трех случаях хромофором в фоторецепторных молекулах служит -цис-ретиналь. Это поразительный пример конвергентной эволюции. Что же такого особенного в 11-г<мс-ретинале Во-первых, это соединение обладает интенсивной полосой поглощения, которая легко сдвигается в видимую область спектра. Во-вторых, под действием света 11-г<г/с-ретиналь легко изомеризуется. Более того, в темноте скорость изомеризации очень низка. В-третьих, изомеризация вызывает большие изменения в структуре. В итоге поглощенный свет преобразуется в движение атомов такого масштаба, которое способно инициировать генерирование нервного импульса. Наконец, исходными предшественниками [c.348]


Смотреть страницы где упоминается термин Фоторецепторные структуры глаз: [c.469]    [c.194]    [c.135]    [c.482]    [c.347]   
Основы и применения фотохимии (1991) -- [ c.236 ]




ПОИСК







© 2025 chem21.info Реклама на сайте