Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органеллы клеточные

    С помощью конфокальной флуоресцентной микроскопии исследована кинетика накопления и локализации полученных соединений в раковых клетках. Показано, что в зависимости от природы заместителей при атоме азота сенсибилизаторы могут концентрироваться при различных клеточных органеллах ядре клетки, митохондрии или аппарате Гольджи. [c.17]

    Что происходит во время митоза с митохондриями Они, как и хлоропласты в растительных клетках, делятся. Следовательно, на опреде- ленных стадиях клеточного цикла в этих органеллах происходит репликация ДНК- По крайней мере в ряде случаев деление митохондрий так связано с клеточным делением, что среднее число митохондрий в расчете на дочерние клетки остается строго постоянным. Аналогичное яв- ление наблюдается и в клетках низших организмов, содержащих водо- [c.39]


    В последнее время высказаны интересные мысли о том, что клеточные ядра, органеллы, жгутики на поверхности клеток существовали ранее как самостоятельные живые существа и лишь впоследствии внедрились в крупные клетки как паразитические образования, а затем уже приспособились к такому образу жизни и стали постоянными, передаваемыми по наследству составными частями клеток так хлоропласты были ранее сине-зелеными бактериями. [c.377]

    ТОК. Самые крупные компоненты эукариотических клеток, органеллы, построены из более мелких субструктур-надмолекулярных ансамблей, а те в свою очередь-из макромолекул. Например, в одной из органелл-клеточном ядре-присутствует несколько типов надмолекулярных ансамблей, таких, как мембраны, хроматин и рибосомы. Каждый такой надмолекулярный ансамбль состоит из макромолекул в хроматине, например, содержатся ДНК, различные белки и небольшое количество РНК. Каждая макромолекула в свою очередь состоит из небольших строительных блоков. [c.72]

    Лизосомы представляют собой пузырьки, окруженные одиночной мембраной и содержащие полный набор ферментов для расщепления практически любого компонента клетки. Лизосомы, по-видимому, образуются из мембран Гольджи. В клетках, способных захватывать частички пищи (например, у амеб), лизосомы являются источником ферментов для ее расщепления. Лизосомы переваривают также отработанные или излишние клеточные компоненты, в том числе митохондрии. Лизосомы — жизненно необходимые клеточные органеллы [23, 24] некоторые серьезные болезни человека обусловлены отсутствием именно, специфических лизосомных ферментов. [c.34]

    Пусть для осуществления химической реакции веществу необходимо продиффундировать в некоторую частицу, которой может быть гранула с иммобилизованным ферментом, клетка растительного или животного происхождения, клеточная органелла, зерно гетерогенного катализатора и т. д. В этом случае э( фективная скорость химической реакции равна произведению истинной скорости на диффузионный фактор т). В свою очередь т] есть функция модуля Тиле (Ф), который определяется соотношением [c.270]

    Геномы мя. вирусов бактерий (бактериофагов), животных и в более редких случаях растений представлены ДНК. Такие клеточные органеллы, как митохондрии и хлоропласты, имеют также свою собственную ДНК размером от неск. десятков до неск. сотен т.п.н. [c.298]

    Экспериментальные приемы, применяемые в биохимии для изучения метаболизма, разнообразны. Исследования химических превращений проводятся на уровне целых органов, в тонких срезах и клеточных культурах, в гомогенатах тканей, органелл и очищенных ферментов. В любом эксперименте важную роль играют методы количественной регистрации химических превращений. Гравиметрические методы недостаточно чувствительны и часто непригодны для анализа органических соединений. Поэтому в биохимии широко применяются спектрофотометрические и колориметрические методы, имеющие высокую чувствительность и позволяющие определять очень небольшие количества веществ. Некоторые превращения сопровождаются поглощением или выделением газа. Для количественной регистрации таких превращений применяются манометрические методы. [c.5]


    Линейная зависимость тока от концентрации кислорода ири потенциале насыщения осуществляется в широком диапазоне концентраций, вполне достаточном для измерения дыхания биологических объектов, поэтому полярографический метод измерения потребления кислорода получил широкое распространение для изучения газообмена тканей и суспензий выделенных клеточных органелл. [c.481]

    Взяв за основу происхождение организма, различают растительные, животные, вирусные и бактериальные белки, в то же время учитывая органы и клеточные органеллы — белки плазмы, мышечные белки, белки молока, яиц, рибосомные белки, белки клеточного ядра, микросом и мембран. [c.344]

    Активность С. часто используют для идентификации внутр. мембран митохондрий при фракционировании клеток и клеточных органелл. [c.451]

    Первые электронные микроскопы появились в продаже в 1939 г. и с тех пор стали одним из важнейших приборов, применяющихся при изучении биологии клетки. Обладая разрешением 0,4 нм, электронный микроскоп позволяет увидеть молекулы белков и нуклеиновых кислот, а также детали строения клеточных органелл. Еще более широко электронный микроскоп стал использоваться с 1950 г., когда были сконструированы микротомы и ножи, позволяющие делать ультратонкие (20—200 нм) срезы тканей, предварительно залитых в пластмассу. [c.19]

    К числу важнейших методов получения реплик относится метод замораживания—скалывания и замораживания—травления. Свежую ткань (которую можно предварительно обработать глицерином, чтобы предотвратить образование больших кристаллов льда) быстро замораживают. Поскольку такие замороженные клетки нередко удается потом оживить, их можно рассматривать как живые. Замороженную ткань помещают в вакуумную камеру, где делают сколы или срезы охлажденным ножом. Иногда образец какое-то время выдерживают в вакууме прн —100 °С, чтобы дать испариться молекулам воды с поверхности. В результате такого травления под вакуумом выявляется в виде четкого рельефа тонкая структура клеточных органелл и мембран. После травления тем или иным методом снимается реплика, которую и исследуют под микроскопом (рис. 1-11). Последние работы свидетельствуют, что скол проходит большей частью по липидному слою клеточных мембран. [c.20]

    У эукариотических организмов ДНК локализована преимущественно в ядрах клеток у прокариот она образует довольно компактный нуклеоид, в котором содержится вся хромосома бактериальной клетки. Такие клеточные органеллы, как митохондрии и хлоро-пласты, имеют свою собственную ДНК- Кроме того, в цитоплазме многих прокариот и низших эукариот обнаруживаются внехромо-сомные ДНК — плазмиды. [c.10]

    Полученный сырой гомогенат процеживают и обычно центрифугируют непродолжительное время, чтобы удалить фрагменты клеток и прочие осколки . Клеточные органеллы, как правило, отделяют центрифугированием [106, 107]. Одна из методик подобного рода состоит в следующем. Гомогенат в 0,25 М сахарозе (изотоничной по отношению к большей части клеток) центрифугируют в течение 10 мин при 600— [c.158]

    Для грубого предварительного разделения клеточных фрагментов достаточно кратковременного последовательного центрифугирования при нескольких разных скоростях (с разным центробежным ускорением) (разд. 3.1. а). Однако, чтобы получить максимально чистые препараты органелл или молекул, используют центрифугирование в градиенте плотности. Например, для разделения РНК на несколько фракций, различающихся по константам седиментации, сначала в пластмассовой центрифужной пробирке создают градиент концентраций раствора сахарозы (от 25% на дне до 5% на поверхности). Затем сверху аккуратно наслаивают препарат РНК и проводят центрифугирование с очень высокой скоростью в течение нескольких часов. Препарат РНК разделяется на ряд медленно седиментирующих резких полос, стабилизируемых градиентом сахарозы. Затем пробирку прокалывают снизу и собирают фракции по каплям в пробирки с помощью коллектора фракций. Далее определяют положеиие каждой фракции и содержание в ней РНК. [c.163]

    При достаточно большом времени центрифугирования частицы достигают в градиенте плотности равновесных положений. Именно та-[ким образом в соответствии с их плотностью в градиенте сахарозы разделяют клеточные органеллы (гл. 1, разд. Б.6). Макромолекулы (на- [c.163]

    В зеленом клеточном соке одновременно присутствуют растворимые белки из всех компартментов клеток (ядер, хлоропластов, митохондрий, цитоплазмы, вакуоли и др.), а также органеллы и их фрагменты, в значительной мере состоящие из липопротеиновых мембран. [c.246]

    В принципе та же ситуация в живой природе. Все биосистемы имеют клеточную организацию с однотипным строением клеток, органелл, генетического аппарата и т.д. У всех видов животных и растений гены построены из одних и тех же четырех нуклеотидов, а белки - из одних и тех же двадцати аминокислот. В процессе дивергентного эволюционного развития совершенствование и усложнение биосистем происходит путем дифференциации и объединения уже существовавших структур с образованием новых связей, т.е. путем добавления и комбинирования, а не кардинальной переделки прежней структурной организации. Таким образом, наличие у природы структурной организации сделало возможным появление научного мышления. "Представим себе, - писал К.А. Тимирязев в 1920 г., - что бы было, если бы вместо наших 60 элементов, их существовало бы 60 млрд. Каждый камень представлялся бы нам чем-то совершенно новым, все известное нам об остальном было бы нам не в прок... А каково было бы положение биологии, если бы существовали бы только неделимые особи, не было бы видов, дети не походили бы на родителей" [10. С. 11]. [c.20]


    Всякому структурному исследованию ДНК или РНК предшествуют выделение их из клеток, очистка и фракционирование. Поскольку в клетке нуклеиновые кислоты практически всегда находятся в комплексес белками (т. е. в вил, нуклеопротеидов), их выделение сводится в основном к очистке от белков (депротеинизации). Чаще всего нуклеиновые кислоты экстрагируют из гомогенатов клеток или очищенных клеточных органелл смесью фенол — вода В присутствии ионных детергентов (например, додецилсульфата натрия). При этом белки (и ряд других клеточных компонентов) переходят в органическую фазу, а нуклеиновая кислота остается в водной фазе. Из водного раствора ДНК или РНК осаждают спиртом. [c.10]

    Содержимое всех живых клеток отделено от окружающей среды специальными структурами - биомембранами, которые обычно называют прото-плазматическими мембранами. У растений и бактерий наряду с такими мембранами снаружи клетки еще имеется клеточная стенка. Для эукариотических клеток характерно деление внутреннего содержимого клетки на отдельные отсеки, или компартменты. Они представляют собой субклеточные органеллы, ограниченные мембранами, например, ядро митохондрии, аппарат Гольджи. Однако мембраны служат не только поверхностями раздела. По существу, мембраны представляют собой сложные по строению и разнообразные по функциям биохимические системы. [c.106]

    Подавляющее количество ДНК сосредоточено в ядре, обычно лишь небольшая часть ДНК находится в составе генома цитоплазматических органелл. Митохондрии грибов и млекопитающих содержат менее 1 % всей ДНК, а пластиды растений — 1—10 %. В клетках дрожжей Sa haromy es erevisiae количество митохондриальной ДНК может достигать 20 "6 от всей клеточной. [c.186]

    Кислородный электрод способен регистрировать меньшие, чем в манометрии, изменения в напряжении кислорода и поэтому особенно ценён при исследований процессов, протекающих в митохондриях, хлоропластах или с участием таких изолированных ферментов, как моноаминооксидаза. Кроме того, у кислородного электрода меньше постоянная времени и его проще приспособить для непрерывной регистрации изменений концентрации кислорода. Манометрия как метод исследования подходит для тех случаев, когда имеют дело с большими количествами материала, и применяется для изучения клеточных органелл, клеточных суспензий, тканевых срезов и гомогенатов, семян и даже целых насекомых. Манометрия позволяет также непрерывно следить за обменом кислорода и двуокиси углерода, причем величина этого обмена не зависит от парциального давления газа в начале эксперимента. Эти особенности отличают манометрию от методов с применением кислородного электрода и позволяют изучать газообмен в присутствии смесей других газов. [c.245]

    После того как синтез аминоацил-тРНК завершен, аминокислота больше не участвует в узнавании. Специфичность определяется полинуклеотидной частью молекулы тРНК путем взаимодействия с генетической матрицей (мРНК), а также с другой поверхностью, на которой происходит белковый синтез,— клеточной органеллой, называемой рибосомой. [c.57]

    Авторы провели ультрамикроструктурные исследования кожи, подвергнутой воздействию смеси хлороформа и метанола. Они показали, что при этом клетки рогового слоя начинают отсепаровываться друг от друга, в них отмечается вакуолизация и глубокие изменения ядерных мембран и мембран клеточных органелл, например, митохондрий. Это приводит к тому, что содержимое указанных образований выходит в цитоплазму. На рис. 9 представлена картина выхода вещества ядра в цитоплазму. [c.108]

    ДНК, не влияя при этом на репликацию ДНК в ядре. Этот эффект сходен с описанным выше действием этидиумбромида на митохондриальную ДНК- Вместе с тем клетки hlamydomonas, обработанные эти-диумбромидом, способны в дальнейшем восстанавливать содержание ДНК в хлоропластах. При интерпретации этих данных было высказана предположение о существовании исходных копий хлоропластной ДНК в специально защищенных участках. При такой интерпретации необходимо учитывать также данные, свидетельствующие о том, что, хотя репликация ДНК в ядре и в других органеллах происходит в разные периоды клеточного цикла, соотношение между содержанием ДНК в ядре и органеллах поддерживается на постоянном уровне. Должен, по-видимому, существовать какой-то регуляторный механизм, обусловливающий сопряжение процессов репликации ДНК в ядре, митохондриях и хлоропластах [184]. [c.271]

    А. содержатся в животных, растениях и микроорганизмах. Многие А. связаны с мембранами клеток и клеточных органелл (транспортные А., АТФ-синтетазы митохондрий, хлоропластов и микроорганизмов). Функционирование таких А. сопряжено с переносом в-в через мембраны. Ингибиторы А. митохондрий-оловоорг. соед., ионы N3, нек-рые антибиотики (напр., ауромнцин) Ыа - и К-зависимых А. клеточных мембран-уабаин, или строфантин О А. миозина-реагенты, образующие с меркаптогруппой тиоляты (напр., соли тяжелых металлов). [c.33]

    Во время процесса дедифференциации, который у всех клеток сходен, клетки должны утратить характерные черты исходной ткани. В первую очередь они теряют запасные вещества — крахмал, белки, липиды. В них разрушаются специализированные клеточные органеллы, в частности хлоропласты, но возрастает число ами-лопластов. Кроме того, разрушается аппарат Гольджи, перестраиваются эндоплазматический ретикулюм и элементы цитоскелета. [c.165]

    Поперечнополосатые мышцы состоят из пучков длинных нитей (волокон) диаметром 10—100 мкм, которые образуются обычно в результате слияния большого числа эмбриональных клеток. Длина таких волокон у млекопитаюш,их составляет, как правило, 2—3 см, однако иногда достигает 50 см. Каждое волокно можно рассматривать как клетку, содержаш.ую до 100—200 ядер. В клетках присутствуют обычные клеточные органеллы, имеюш.ие, однако, специальные названия. Например, плазматическая мембрана (плазмалемма) мышечных клеток (волокон) носит название сарколеммы их цитоплазма называется саркоплазмой, а митохондрии — саркосомами. [c.318]

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]


Смотреть страницы где упоминается термин Органеллы клеточные: [c.58]    [c.365]    [c.160]    [c.136]    [c.167]    [c.346]    [c.364]    [c.65]    [c.247]    [c.517]    [c.59]    [c.225]    [c.235]    [c.159]    [c.191]    [c.7]    [c.27]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.0 ]

Молекулярная биология (1990) -- [ c.0 ]

Биохимия (2004) -- [ c.12 , c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Органеллы



© 2025 chem21.info Реклама на сайте