Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны плазматическая

    Развитие радиоизотопных методов позволило получить точные количественные данные о скоростях обновления в организмах биологически активных соединений. Было показано, что клетка много раз обновляет свой состав за время своего существования. Особенно интересно, что скорость замены той или иной составной части макроструктуры (например, мембраны) зависит от химической природы этой части и скорости переноса ее от места синтеза к месту функционирования высокая степень кинетической согласованности обеспечивает сохранение всей макроструктуры. Время полужизни ядерных белков около 120 ч, белков плазматической мембраны —50, фосфолипидов — от 15 до 80, холестерина от 24 до 140, цитохрома (65) —около 100 ч и т. д. [c.347]


    Описанные модели носят общий характер, и основанием для них послужили данные, полученные на мембранах самой различной природы, что нельзя считать правомерным. Проверка унитарной модели мембран, а также другие многочисленные экспериментальные данные показали, что биологические мембраны очень сильно отличаются как по химическому составу, так и по форме, размерам, структурной организации и биологическим функциям. Поэтому целесообразно моделировать мембраны соответственно их функциям (например, мембраны плазматические, митохондриальные, ядерные и т. п.), с последующей экспериментальной проверкой именно этих конкретных моделей. [c.38]

    Плазматическая мембрана клеток растений — это полупроницаемая мембрана. Жидкость внутри клетки создает осмотическое давление. На рис. 9.8 показано, что происходит, когда клетка растения попадает в растворы с различными осмотическими давлениями. Осмос жизненно необходим для существования растений, поскольку благодаря ему корни растения получают воду. [c.203]

    Возможно также, что имеет место кооперативный процесс передачи сигнала от одной из молекул родопсина на другой белок, находящийся на некотором расстоянии и контролирующий проницаемость мембраны. Можно даже допустить, что кооперативный процесс развивается настолько широко, что вдоль мембраны диска распространяется какой-то реальный физический сигнал, достигающий края диска и приводящий к генерации определенного химического сигнала вблизи плазматической мембраны. [c.67]

    Тонкая ( 8 нм) наружная клеточная мембрана — плазмалемма (рис. 1-4)—регулирует поток веществ в клетку и из клетки, проводит импульсы в нервных и мышечных волокнах, а также участвует в химических взаимодействиях с другими клетками. Складки наружной мембраны нередко вдаются глубоко внутрь клетки, в цитоплазму так, на--Пример, в клетках поперечнополосатых мышц они образуют трубочки Т-системы, которая участвует в проведении возбуждения, инициирующего процесс сокращения (гл. 4). Складки плазматической мембраны могут соединяться с ядерной оболочкой, создавая прямые каналы (один или несколько) между внеклеточной средой и перинуклеарным пространством [12]. [c.29]

    В последней фазе деления клетки — телофазе, во время которой воК руг каждого набора дочерних хромосом образуются новые ядерные оболочки, клетка либо делится на две, либо (в случае растений) в центре клетки образуются новые плазматические мембраны и клеточная стенка. [c.265]

    РИС. 5-8. Строение клеточной оболочки бактерий. Схема плазматической мембраны и стенки грамотрицательной бактерии (см. S haitman С., J Ba teriol., 108, 553—563, [c.388]

    Как происходит высвобождение нейромедиатора Путем изучения миниатюрных потенциалов концевых пластинок удалось установить, что высвобождение медиатора идет квантами , т. е. путем полного опорожнения каждого отдельного пузырька. Миниатюрные потенциалы представляют собой флуктуации постсинаптического потенциала, наблюдаемые при слабой стимуляции пресинаптического нейрона. Эти флуктуации соответствуют случайному высвобождению медиатора из отдельных синаптических пузырьков [42]. В нормальных условиях под влиянием сильного импульса выделяется примерно 100—200 квантов медиатора — количество, достаточное для инициирования потенциала действия в постсинаптическом нейроне. Какие химические процессы стимулируют высвобождение нейромедиатора Видимо, деполяризация мембраны синаптических окончаний вызывает быстрый ток ионов кальция в клетку [43, 44]. Временное увеличение внутриклеточной концентрации Са + стимулирует слияние мембраны синаптических пузырьков с плазматической мембраной и таким образом запускает процесс высвобождения их содержимого. Для выброса содержимого одного пузырька требуется примерно четыре нона кальция. Синаптические пузырьки покрыты оболочкой, напоминающей по структуре решетку и образованной одним белком — клатрином (мол. вес. 180 000). Каково значение этой оболочки, пока еще неясно. [c.331]


    Микросомы (термин, часто встречающийся в биохимической литературе) — это мелкие частицы диаметром 50—150 нм, которые представляют собой фрагменты в основном ЭР и частично плазматической мембраны. Микросомы образуются в процессе растирания или гомогенизации клеток. При центрифугировании разрушенных клеток сначала оседают ядра и другие крупные фрагменты, затем — митохондрии. При очень высоких скоростях (например, при 100 000 ) оседают микросомы (их масса составляет 10 —10 дальтон). На электронных микрофотографиях видно, что в микросомах фрагменты мембран замыкаются с образованием небольших мешочков, на наружной поверхности которых сохраняются рибосомы  [c.33]

    РИС. 1-11. г. Ультратонкий срез перегородчатого контакта того же типа, что и на рис. В. Плазматические мембраны двух клеток соединяются с помощью электроноплотных пластин, или перегородок, регулярно расположенных в межклеточном пространстве. Обратите внимание на аппарат Гольджи в нижней части снимка [44]. [c.57]

    РИС 4-25. А. Схематическое изображение саркомера поперечнополосатой мышцы Б Схема взаимодействия между миозином и связанным с мембраной актином, приводящего к направленному движению в немышечных клетках На схеме показано, как связанный с мембраной пузырек перетягивается в направлении другой мембраны, например плазматической. Существенной особенностью этой модели является биполярная природа миозиновых агрегатов [98] [c.326]

    Другие тейхоевые кислоты ковалентно связаны с гликолипидами (например, с олигосахаридом, присоединенным гликозидной связью к диглицериду), входящими в состав плазматической мембраны [111]. [c.395]

    Особенность такого подхода в том, что В1 деление индивидуальных компонентов белково-липидной природы необязательно. О перспективности такого подхода свидетельствуют успешные попытки интеграции с искусственными мембранами различных типов возбудимых мембран аксональной мембраны, плазматической мембраны неисчерченных мышечных клеток, а также саркоплазматического ретикулума, мембран эритроцитов и др. [c.289]

    Клеточный сок растений характеризз ется осмотическим давление.м от 5 до 10 атм. Солончаковые почвы развивают ос.мотическое давление 12,5 атм, а чернозем — всего лишь 2,5 атм. Плазматическая мембрана клеток играет роль полупроницаемой мембраны. Поскольку солончаковая почва содержит более концентрированные растворы солей (имеет большое осмотическое давление), то вода покидает клетки растения. В результате цитоплазма клетки отслаивается, а растение погибает. На черноземе картина иная — вода из почвы поступает в клетку и разбавляет теперь уже более концентрированный раствор в клетке. Растение хорошо впитывает влагу и развивается. Однако, если испарение и расход влаги недостаточны (длительное время стоит сырая и холодная погода), то при избытке влаги клетка растения может лопнуть. [c.227]

    Каков возможный механизм инициации нервного импульса последовательностью реакций, приведенных на схеме (13-35) Проще всего предположить, что коиформационное изменение в молекуле ретиналя в процессе изомеризации 11-г Ыс-ретиналя в полностью гранс-ретиналь [схема (13-34)] индуцирует изменение конформации белка, что приводит к появлению у последнего ферментативной активности. Ферментом, инициирующим каскад химических превращений, кульминацией которых является нервный импульс, мог бы быть метародопсин П, но в пользу этого предположения нет никаких экспериментальных данных. Не исключено, что индуцированные конформационные изменения в молекуле белка открывают канал в мембране диска и какое-то вещество диффундирует по этому каналу наружу. В качестве возможного кандидата на роль указанного вещества все чаще рассматривается Са +. Расстояние от мембран дисков до плазматической мембраны палочки таково, что высвободившееся вещество успеет достичь плазматической мембраны (где и возбуждается нервный импульс) за счет диффузии. [c.66]

    Способность к образованию замкнутых структур присуща, по-види-Мому, фрагментам любых мембран. Так, при гомогенизации нервных клеток из их синаптических окончаний образуются замкнутые структуры— синаптосомы. Правда, последние формируются из фрагментов плазматической мембраны, а не ЭР и часто содержат митохондрии. [c.33]

    Поперечнополосатые мышцы состоят из пучков длинных нитей (волокон) диаметром 10—100 мкм, которые образуются обычно в результате слияния большого числа эмбриональных клеток. Длина таких волокон у млекопитаюш,их составляет, как правило, 2—3 см, однако иногда достигает 50 см. Каждое волокно можно рассматривать как клетку, содержаш.ую до 100—200 ядер. В клетках присутствуют обычные клеточные органеллы, имеюш.ие, однако, специальные названия. Например, плазматическая мембрана (плазмалемма) мышечных клеток (волокон) носит название сарколеммы их цитоплазма называется саркоплазмой, а митохондрии — саркосомами. [c.318]

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]


    Значительная часть наш их знаний о мембранах сложилась благодаря интенсивным многолетним исследованиям, проведенным на мембранах определенных типов. К их числу относятся следующие 1. Мие-линовая оболочка, состоящая из плазматических мембран, образуемых шванновскими клетками, которые прилежат ко многим нейронам. Шванновские клетки как бы наматываются на аксоны нейронов, причем цитоплазма из них выдавливается и образуются тонкие, но плотно упакованные мембранные слои, окружающие аксоны и служащие для них прекрасным изолятором . Из всех известных мембран миели-новые обладают наибольшей устойчивостью и содержат наибольшее количество липидов (80%). 2. Плазматические мембраны эритроцитов человека, которые могут быть получены путем осмотического шока этих клеток. Образующиеся при этом тени эритроцитов содержат около 1 % сухого вещества клетки по сравнению с другими мембранами они изучены, пожалуй, наиболее полно. 3. Мембраны б актерий, и в первую очередь Е. oli. 4. Наружный членик рецепторных клеток сет- [c.337]

    При электрофорезе белков плазматических мембран в полиакриламидном геле с додецилсульфатом натрия (гл. 2, разд. 3.6) получают от 1 до 6 четко выраженных полос и, как минимум, еще 35 менее интенсивных полос, соответствующих мол. весам в интервале от 10 000 до 360 000 [28]. Однако некоторые очень важные мембранные белки, апример (Na+-f К+)-зависимая АТРаза (разд. Б.2.в), присутствуют в столь незначительных количествах (в одном эритроците их содержится всего несколько сотен молекул [3, За]), что эти белки не удается идентифицировать на электрофореграмме. Митохондриальные мембраны могут иметь еще более сложный состав, чем плазматические, тогда как состав миелина несколько проще. [c.352]

    Изучение фотографических изображений клетки, полученных прн помощи микроскопа в разные моменты времени, позволили увидеть, что плазматическая мембрана, так же как и митохондрии и другие органеллы, постоянно находится в движении. Митохондрии скручиваются и поворачиваются, а поверхность мембраны постоянно совершает волнообразные движения. Пузырьки освобождают свое содержимое в окружающую среду, выводя его из клеток, а перенос веществ внутрь клетки осуществляется за счет процесса эндоцитоза (гл. 1, разд. Б.4). При помощи химических методов было показано также, что составляющие мембраны вещества транспортируются из эндоплаз1матического ретикулума в пузырьки аппарата Гольджи, в экскреторные гранулы и в плазматическую мембрану. Важным этапом биосинтетических процессов, протекающих в клетке, является присоединение углеводных (гликозильных) остатков к молекулам белка с образованием гликопротеидов и гликолипидов. Ферменты, катализирующие эти реакции, — гликозилтрансферазы (гл. 12)-—обнаружены в эндоплазматическом ретикулуме и в пузырьках а1ппарата Гольджи. Эти ферменты катализируют присоединение углеводных единиц (по одной в каждом акте реакции) к определенным местам молекул белков, липидов и других соединений, экскретируемых из клеток. Другие ферменты катализируют присоединение сульфатных и ацетильных групп к углеводным фрагментам молекул глико Протеидов. [c.356]

    Гликопротеиды и гликолипиды наружной поверхности плазматической мембраны также, по-видимому, образуются в эндоплазматическом ретикулуме и в пузырьках аппарата Гольджи. Эти компоненты мембран должны транспортироваться из внутренней части клетки в плазматическую мембрану. В процессе транспорта вновь синтезируемые соединения подходят к внутренней стороне мембраны, где ферменты, находящиеся в пузырьках, осуществляют присоединение гликозильных фрагментов и другие лревращения. Если описанная картина верна, то [c.356]

    Рассмотренные выше факты привели к концепции, предполагающей, что ( а++К+)-зависимая АТРаза и является, по существу, мембранным ионным нашсом. Для активации фер ментной системы ионы К+ и №+ должны находиться по разные стороны от мембраны. Вместе с тем очищенный фермент должен гидролизовать АТР в пробирке в присутствии Na++K++Mg2+. Этот бетокудалосьвыделитьвочищенном виде [53—56]. При гель-электрофорезе в присутствии додецилсульфата натрия очищенная (На++К+)-зависимая АТРаза разделяется на две субъединицы. Большая из них представляет собой полипептидную цепь с мол. весом - 95 000—100 000, а меньшая является гликопротеидом с мол. весом 50 000. Антитела к изолированной большой субъединице связываются с фрагментами мембран, принадлежащими, по-видимому, участкам внутренней поверхности плазматической мембраны [57]. Логично предположить, что гликопротеидная субъединица фермента расположена на наружной поверхности мембраны. [c.362]

    Характерная функция ионов Са + у живых существ состоит в способности активировать различные метаболические процессы. Это происходит при резких -изменениях проницаемости плазматических мембран или мембран эндоплазматического ретикулума, в результате которых становится возможной диффузия ионов Са + в цитоплазму. Так, например, при сокращении мышцы в результате освобождения ионов Са + из эндоплазматич0окого ретикулума его концентрация увеличивается приблизительно от 0,1 до 10 мкМ . Связывание ионов Са + с тропонином С инициирует сокращение (гл. 4, разд. Е.1) . Мембраны эндоплазматического ретикулума мышечного волокна содержат большое количество белка кальциевого пасоса, а также ряд белков, связывающих кальций (гл. 4, разд. В.8.в) . Один из Са +нсвязывающих белков мышцы кролика, кальсеквестрин (мол. вес 46 500), способен связывать до 43 молей Са + на моль белка"  [c.373]

    Плазматическая мембрана бактериальных клеток (кроме микоплазм) окружена многослойной стенкой, которая может быть отделена от. мембраны узким периплазматическим пространством. Толщина зтого пространства, которая зависит от осмотического давления среды, в обычных условиях очень мала. Самый внутренний слой стенки (рис. 5-8) состоит из пептидогликана, или муреина. Основу пептидо-гликана составляет полимер, построенный из чередующихся остатков [c.388]

    Некоторые организмы, особенно бактерии, получают энергию nyrew окисления Нг, H2S или Fe +, а не окисления органических субстратов Кроме того, некоторым специализированным бактериям свойственно-анаэробное дыхание, при котором NO 3, SO или СО2 являются окислителями либо восстановленных переносчиков, либо восстановленных неорганических соединений. В этой главе мы рассмотрим эти процессы,, поставляющие энергию, а также химию реакций, в результате которых атомы кислорода из молекулы О2 входят в органические соединения Происходящие в клетках окислительные процессы исследовать довольно трудно главным образом потому, что соответствующие ферменты в клетке расположены на мембранах или внутри мембран. Б бактериях эти ферменты расположены на внутренней стороне плазматической мембраны или на мембранах мезосом. У эукариот эти ферменты находятся во внутренней мембране митохондрий и в меньшей степени в мембранах эндоплазматического ретикулума. Особенно много неудач было связано с изучением окислительного фосфорилирования (стр. 391). Большие трудности вызвало выделение участвующих в процессе компонентов, но еще труднее оказалось снова собрать эти Компоненты в активно функционирующую систему. [c.361]

    Как и наружная плазматическая клеточная мембрана, внутренняя митохондриальная мембрана отличается высокой избирательностью. Некоторые неионизированные вещества легко проходят через нее, тогда как транспорт ионных веществ, включая анионы дикарбоновых и трикарбоновых кислот, находится под жестким контролем. В некоторых случаях анионы перемещаются в результате энергозависимого активного транспорта . В других случаях анион может пройти внутрь лишь в обмен на другой анион, выходящий наружу. Во всех этих случаях необходимо участие специфических транслоцирующих белков-переносчиков (гл. 5, разд, Б,2). [c.423]


Смотреть страницы где упоминается термин Мембраны плазматическая: [c.248]    [c.238]    [c.203]    [c.15]    [c.19]    [c.67]    [c.348]    [c.27]    [c.29]    [c.65]    [c.65]    [c.355]    [c.357]   
Биохимия Том 3 (1980) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте