Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нервный импульс

    Существует много других процессов, регулируемых циклическими нуклеотидами их можно разделить на следующие три категории секреция гормонов, передача нервных импульсов и белковый синтез. Например, сАМР, опять же посредством протеин-кииазы, активирует фермент тирозингидроксилазу. [c.143]

    При действии раздражителя на нервное или мышечное волокно мембранный потенциал в месте раздражения нарушается. Это нарушение начинает распространяться вдоль волокна приблизительно с постоянной скоростью. В первый момент состояния возбуждения резко возрастает проницаемость мембраны для ионов Ыа+, поток которых устремляется внутрь клетки. Затем возникает ток ионов К+, направленный во внешнюю среду. Распространяющаяся по волокну волна называется волной потенциала действия. Схема распространения нервного импульса может быть смоделирована на основе некоторых электрохимических систем, а само явление можно феноменологически описать, если задаться электрической емкостью, сопротивлением утечки мембраны, формой нервного импульса, и рассматривать его как распространение электрического сигнала в кабеле с определенными параметрами. [c.159]


    Как и спирт, кокаин действует на нейроны, изменяя передачу нервных импульсов в определенной части мозга. Он действует обезболивающе, уменьшая чувствительность нервных мембран к приему вещества-переносчика. Он также предотвращает разрушение переносчика после прохождения сигнала. Почему и как он вызывает эйфорическое состояние, выяснено только частично, но иногда при этом происходит опасное повышение кровяного давления, кровоизлияние в мозг и даже может наступить смерть. [c.484]

    Применение таких обезболивающих (анестезирующих) средств не всегда безопасно. Во-первых, чтобы не задохнуться, больной должен одновременно вдыхать и кислород. Поэтому обезболивающий газ приходится смешивать в нужном соотношении с кислородом. А такие смеси обычно взрывоопасны. Поэтому при этом нельзя курить, нужно избегать случайных искр и так далее. Кроме того, обезболивающего средства нельзя использовать слишком много. Сердце, легкие и другие жизненно важные органы тоже управляются нервными Импульсами. Если в организм поступит слишком много обезболивающего средства, это может привести к тому, что замкнутся и эти нервы, что грозит больному гибелью. [c.54]

    За два последних десятилетия получила развитие новая отрасль науки — биоэлектрохимия. Важный раздел биоэлектрохимии связан с изучением мембран, отделяющих внутреннюю часть клетки от среды, которая ее окружает, и играющих большую роль в транспорте питательных веществ. В основе этих процессов лежат электрохимические закономерности. Большую роль играет электронная проводимость мембран в энергетических процессах, протекающих в живых организмах. Электрохимические процессы лежат в основе передачи нервных импульсов, в возникновении биотоков. [c.313]

    Вещества, действующие на генерацию, проведение и передачу нервного импульса, или нейротропные яды (фосфорорганические соединения, сероуглерод). [c.367]

    Биолог. Да, есть. Например, проведение нервного импульса и другие в нервной системе. [c.25]

    Первый закон термодинамики является универсальным законом природы. Он полностью справедлив и для живых организмов. Протекание процессов в живом организме требует затраты энергии. Она необходима для мышечной деятельности и, в частности, для работы сердца и поддержания постоянной температуры тела. Даже в состоянии покоя человек массой 80 кг отдает окружающей среде - 1200 ккал в сутки. Для нормальной жизнедеятельности необходимы потоки веществ из одной части организма в другие. Транспорт этих веществ также требует затраты энергии. В организме совершается и электрическая работа, необходимая для передачи нервных импульсов. Термохимия позволяет составить баланс энергии в живом организме. [c.46]


    Электрохимическая активность живых тканей представляет значительный интерес в связи с переносом ионов в организме, как под действием внешних полей, так и в процессах обмена веществ,, явлениях проницаемости тканей, их возбуждения, проведения нервных импульсов и др., связанных с биопотенциалами. Так, числа переноса ионов в коже определяют эффективность и о н о-фореза — метода введения лекарственных веществ в организм [c.234]

    Натрий более активен, чем литий, особенно в тех реакциях, в которых он действует как восстановитель. Ионы натрия можно обнаружить в малых количествах во всех растениях, однако в морских растениях его содержание повышено (в золе морской травы— более 16% натрия). В животных организмах ионы натрия вместе с ионами калия выполняют функции передатчиков нервного импульса. Ионы натрия играют важную роль в поддержании водного режима организма. Избыточное количество ионов натрия способствует удержанию в организме воды. Соли натрия (и других металлов) определяют осмотическое равновесие в клетках и влияют на функции ферментных систем. [c.152]

    Различная адсорбируемость солей калия и натрия почвенным комплексом привела к разделению ионов ионы натрия оказались в водах морей и океанов, а ионы калия закрепились в почве и, естественно, вошли как важнейший компонент в метаболические процессы растений. Различная способность ионов калия и натрия проходить через биологические мембраны обусловила и специфические функции этих ионов в передаче нервного импульса. [c.153]

    Таким образом действие мембраны отнюдь не исчерпывается механическим разделением пространства на биологическую область — клетку — и окружающую среду мембраны активно участвуют в процессах метаболизма, а также и в передаче нервных импульсов. [c.389]

    Биологические функции биометаллов и их координационных соединений с биолигандами, другими словами, роль их в живых организмах давно интенсивно изучаются. И тем не менее на сегодня механизмы биологического действия ионов щелочных и щелочноземельных металлов окончательно не выяснены. Одной из важнейших проблем является распределение Ка+ и К+ между внутриклеточным и внеклеточным пространством. Наблюдается избыток во внеклеточном пространстве, К+ — во внутриклеточном. Эти ионы ответственны за передачу нервных импульсов. Мо2+ изменяет структуру РНК Са + играет особую роль в процессах сокращения и расслабления мышц. Ионы железа, меди н ванадия в биокомплексах присоединяют молекулярный кислород и выполняют, таким образом, функцию накопления, хранения и транспорта молекулярного кислорода, необходимого для реализации многих процессов с выделением энергии, а также для синтеза ряда веществ в организме. [c.568]

    Органические фосфаты табун, зарин и зоман относятся к так называемым нервно-паралитическим ядам, потому что они блокируют фермент холинэстеразу, а значит, и расщепление ацетилхолина (разд. 9.5.3), которое необходимо для переноса нервных импульсов в организме. В результате, помимо прочего, нарушается деятельность сердца и человек через короткое время умирает в судорогах. Во время второй мировой войны немецкие фашисты производили эти вещества и готовились использовать в военных целях. [c.339]

    Теперь мы обратимся к краткому рассмотрению того, как описанные фотохимические изменения превраш,аются в электрический импульс, который стимулирует мозг. Существуют доказательства, что одиночный квант света может вызвать раздражение палочки сетчатки. Однако поглощение одного кванта еще не создает эффекта зрения. Для этого требуется попадание нескольких квантов (согласно разумной оценке, от двух до шести квантов) в одну и ту же палочку в течение относительно короткого временного промежутка. Но даже в этом случае процесс весьма эффективен, а энергия конечной реакции существенно превосходит энергию, поглощенную зрительным пигментом. Поглощение света инициирует цепь реакций, черпающих энергию из метаболизма. Тем самым зрительное возбуждение является результатом усиления светового сигнала, попадающего в сетчатку. Фоторецептор служит биологическим эквивалентом фотоумножителя, который преобразует кванты света в электрический сигнал с большим усилением и низким шумом (см. гл. 7). И фоторецептор, и фотоумножитель достигают большого коэффициента усиления с помощью каскада стадий усиления. Зрительные пигменты представляют собой интегральные мембранные белки, которые находятся в плазме и мембранах дисков внешнего сегмента фоторецептора. Фотоизомеризация ретиналя вызывает серию конформационных изменений в связанном с ним белке и тем самым образует или раскрывает ферментативный активный центр. Следует каскад ферментативных реакций, которые в конце концов дают нервный импульс. Электрический ответ начинается с кратковременной гиперполяризации, вызванной закрытием нескольких сотен натриевых каналов в плазматической мембране. Таким способом молекулы-посредники (мессенджеры) передают информацию от диска рецептора к мембране плазмы. Вероятным кандидатом на роль мессенджера является богатый энергией циклический фосфат цГМФ (гуанозин-3, 5 -цикломонофосфат), возможно, в сочетании с ионами Са +. Было показано, что катионная проводимость плазматических мембран палочек и колбочек прямо контролируется цГМФ. Таким образом светоиндуцированные структурные изменения диска активируют механизм преобразования, который сам генерирует потенциал, распространяющийся по плазматической мембране. В настоящее время детали механизмов преобразования и усиления продолжают исследоваться. Была предложена схема, основной упор в которой делается на центральную роль фосфодиэстеразы в процессе контроля за кон- [c.241]


    Адреналин, вызывая расширение мелких кровеносных сосудов, пронизывающих мышцы, играет большую роль в передаче нервных импульсов. [c.464]

    Как известно, клетки нервной системы (нейроны) не имеют непосредственного контакта друг с другом. Они разделены синаптическими щелями, через которые сигнал (передаваемый в виде бегущей по нейронной мембране волны поляризации-деполяризации) пройти не может без определенного посредника, называемого нейромедиатором (или нейротрансмиттером). Передача нервного импульса от одного нейрона к другому происходит следующим образом (рис. 3, схема А). По достижении нервным сигналом конца возбужденной клетки (нейрон 1) в ее пресинаптической области синтезируется нейротрансмиттер (АХ), который затем выбрасывается в синаптическую щель и быстро диффундирует к своему рецептору (R), расположенному в постсинаптической мембране покоящейся клетки (нейроне 2). [c.31]

    В организме человека 99% всех атомов металлов составляют На, К, Mg и Са. Эти метскллы являются важнейшими фгосторами для развития растительного и животного оргализма. В отличие от натрия, калий в преобладающем количестве находится внутри клеток. Ион калия играет важную роль в некоторых физиологических и биохимических процессах, например, он участвует в проведении нервных импульсов. Определенная концентрация калия в крови необходима для нормальной работы сердца. В организм калий поступает главным образом с растительной пищей суточная потребность взрослого человека в нем составляет 2—3 г. Магний образует хелатное комплексное соединение с атомами азота в кольцах органического вещества — пиролла (хлорофилл). Недостаток магния в организме человека ведет к белой горячке, ознобу, судорогам, онемению конечностей. Отмечено, что у лиц, страдающих алкоголизмом, всегда имеется недостаток в организме магния. По значению радиуса к иону калия близок ион бария и поэтому последний способен замещать калий в его соединениях. В результате барий является мускульным ядом. [c.590]

    Нервно-паралитические газы угнетают фермент холинэстеразу, осуществляющую гидролиз медиатора ацетилхолина, который участвует в передаче нервных импульсов как в центральных, так и периферических отделах нервной системы. Возникающее в результате угнетения активности холинэстеразы избыточное накопление ацетилхолина приводит к нарушению передачи нервных импульсов, которое выражается вначале в виде возбуждения, а затем в параличе важнейших физиологических систем. Более подробную информацию можно найти в специальных монографиях, например [Стройков,1978]. - Прим. ред. [c.396]

    Функционирование мозга и нервной системы человека основано на активности нейронов. Нейрон — это нервн 1Я клетка вместе с ее отростками, представляющая собой структурно-функциональный элемент нервной системы. Нейрон состоит из тела (или сомы), которое содержит ядро, и отходящих от тела множества коротких ветвеобразных дендритов и одного, как правило, ветвящегося лишь на конце отростка аксона. Соединение нейронов в нервной системе осуществляется с помощью специальных контактов — возбуждающих и тормозящих синапсов, передающих нервные импульсы и концентрационно-полевые возмущения. Каждый нейрон функционирует под воздействием входных сигналов, поступающих через дендриты. Выходной сигнал возбужденного нейрона передается через аксон. Входные сигналы через дендриты мо1уг быть либо возбуждающими, либо тормозящими. Нейрон возбуждается, т. е. передает сигнал через аксон, только в том случае, если число пришедших по возбуждающим дендритам сигналов больше числа сигналов, пришедших по тормозящим дендритам. [c.85]

    Циклопропан обладает нарксппескими свойствами (он заторма-Ж ивает проводимость нервных импульсов, хак бы замьжая цепь). Вдыхая его пары, человек перестает чувствовать боль. Циклогексан и его производные часто используются учеными и технологами как удобные модели для изучения свойств, явлений, процессов. В технике, например. [c.141]

    В определенных условиях на пассивирующихся металлах наблюдаются периодические колебания потенциала в гальваностатических условиях или колебания тока при Я=соп51. Это объясняется наличием падающей характеристики на поляризационной кривой пассивирующихся металлов, т. е. области с (д1 /дЕ)<С.О, и с закономерным переходом электрода из активного состояния в пассивное и обратно. Существует аналогия между периодическими электродными процессами и явлениями нервной проводимости. Например, активация определенного участка железной проволоки в азотной кислоте приводит к возникновению активационных волн, закон распространения которых вдоль проволоки имеет сходство с законом распространения нервного импульса (модель нервов Оствальда — Лилли). Поэтому периодические процессы при пассивации используются для моделирования механизма действия нервных клеток — нейронов. [c.371]

    Электрохимический подход может оказаться полезным в познании элементарной природы основных биологических процессов. Именно поэтому привлекает внимание новая пограничная область науки — биоэлектрохимия, возникшая на границе электрохимии и биологии. На данном этапе большинство вопросов биоэлектрохимии связано с изучением свойств биологических мембран и их моделей. Клеточные или плазменные мембраны отделяют внутреннюю часть любой клетки живого организма от окружающей клетку среды. Так как состав раствора внутри клетки и в окружающей среде различен, то между ними всегда имеется некоторая разность потенциалов, а следовательно, вдоль мембраны всегда образуются двойные слои. Образование и взаимодействие двойных слоев позволяет объяснить целый ряд процессов в живом организме, например, такой важный процесс, как передача информации посредством нервного импульса. [c.406]

    В настоящее время созданы искусственные фосфолипидные мембраны. При введении в них некоторых активных веществ (например, валиномицина, динитрофенола, пентахлорфенола и др.) эти мембраны во многих отношениях воспроизводят свойства тканей нервного волокна, но оказываются более удобными для экспериментального и теоретического исследования, чем ткани живого организма. Это привело к новым подходам в изучении молекулярного механизма нервного возбуждения и распространения нервных импульсов, в результате которых сделаны попытки феноменологического описания процесса распространения нервного возбуждения при помощи физических моделей. Быстрое развитие биоэлектрохимии, безусловно, окажет влияние на решение прикладных задач в области биологии и медицины. [c.406]

    Электрохимическая активность живых тканей представляет значительный интерес в связи с переносом ионов в организме, как под действием внешних полей, так и в процессах обмена веществ, изменения проницаемости тканей, их возбуждения, проведения нервных импульсов и др., связанных с биопотенциалами. Так, числа переноса ионов в коже определяют эффективность ионофоре-3 а — метода введения лекарственных веществ в организм человека через кожу постоянным током, широко применяемого в медицинской практике. Коллоидно-химическое исследование ионофореза в работах Цыгир и Фридрихсберга позволило установить основы [c.217]

    Ацетилхолин и его гидрохлорид влияют на химические процессы, протекающие в нервной системе (при переносе нервных импульсов). Они существенно влияют на кровяное давление. Фермент холинэстераза расщепляет их с образованием холина [(СНз)з0N H2 H2OH ОН], который встречается в организме человека как составная часть сложных липидов. Ацетилхолин, как и холин, относится к четвертичным аммониевым основаниям. [c.311]

    Рис 3 Передача нервного импульса ацетилхолином (АХ) через синаптическую щель Расширение ионофорного канма под действием АХ [c.31]

    Интересные результаты получены при изучении ионного транспорта через подобные мембраны и электропроводности элементарных пленок обратных эмульсий, стабилизированных природными и синтетическими ПАВ различной природы. Выяснилось, в частности, что электропроводность таких мембран резко возрастает при добавлении некоторых биологически-активных ПАВ. Например, введенне во внешнюю водную среду липидной мембраны ничтожных количеств антибиотика валиномицина приводит к увеличению электропроводности мембраны на пять порядков величины вместе с тем мембрана становится проницаемой для ионов калия и водорода, но не пропускает через себя ионы натрия. Резкое понижение электрического сопротивления искусственных мембран может наблюдаться и при введении в их состав молекул белков, а та,кже ферментов с добавкой в систему соответствующего субстрата. Изучение свойств таких мембран позволяет моделировать ряд важных биологических процессов, например прохождение нервного импульса, образование фоточувствительной ячейки и др. [c.291]

    Он образует цилиндрический канал, который с одной стороны выступает на 65 А в синаптическую щель, а с другой - пронизывает липидный бцслой мембраны, входя на 15 А внутрь клетки. Этот узкий канал (или пора) расширяется до 20 А при "посадке" на рецептор нейромедиатора (комплекс RAX) за счет резкого уменьшения вращательного (конформационного) движения субъединиц. Увеличение размера канала облегчает прохождение ионов К+ и Na+ через мембрану против электрохимического фадиента. При этом изменяется мембранный потенциал покоящегося нейрона 2, и в нем генерируется нервный импульс. После этого нейромедиатор гидролизуется ацетилхолинэстера-зой до неактивного холина, и ионофорныи канал закрывается. [c.31]


Смотреть страницы где упоминается термин Нервный импульс: [c.569]    [c.263]    [c.86]    [c.45]    [c.143]    [c.54]    [c.392]    [c.386]    [c.392]    [c.139]    [c.237]    [c.305]    [c.362]    [c.351]    [c.392]    [c.703]    [c.186]    [c.30]    [c.43]   
Смотреть главы в:

Биохимия Том 3 -> Нервный импульс

Физика и химия жизни -> Нервный импульс

Биология Том2 Изд3 -> Нервный импульс


Принципы структурной организации белков (1982) -- [ c.285 , c.288 ]

Принципы структурной организации белков (1982) -- [ c.285 , c.288 ]

Органическая химия Том2 (2004) -- [ c.54 ]

Нейробиология Т.2 (1987) -- [ c.0 ]

Нейрохимия (1996) -- [ c.247 ]

Биологическая химия (2004) -- [ c.533 , c.546 , c.548 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.326 ]




ПОИСК





Смотрите так же термины и статьи:

Импульс



© 2025 chem21.info Реклама на сайте