Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ретиналь

Рис. 8.11. Формулы ретинола (а), аИ-трамс-ретиналя (б), Рис. 8.11. Формулы ретинола (а), аИ-трамс-ретиналя (б),

    Путем химических исследований экстрактов сетчатки было показано, что зрительные пигменты представляют собой соединения, у которых хромофор каротиноидной природы прикреплен к белку. Типичный пигмент родопсин (зрительный пурпур) содержит 11-чис-ретиналь в качестве каротиноидного хромофора и белок опсин. Рис. 8.11 показывает родство между рети-налем, ретинолом (витамином А) и -каротином. Животные синтезируют ретинол из каротиноидов растительного происхождения, а ретиналь получается в сетчатке при ферментативном окислении ретинола, Опсин является окрашенным белком, найденным исключительно в палочках фотопсин обнаружен в колбочках при связывании с ретиналем образует иодопсин). Опси- [c.238]

    Теперь мы обратимся к краткому рассмотрению того, как описанные фотохимические изменения превраш,аются в электрический импульс, который стимулирует мозг. Существуют доказательства, что одиночный квант света может вызвать раздражение палочки сетчатки. Однако поглощение одного кванта еще не создает эффекта зрения. Для этого требуется попадание нескольких квантов (согласно разумной оценке, от двух до шести квантов) в одну и ту же палочку в течение относительно короткого временного промежутка. Но даже в этом случае процесс весьма эффективен, а энергия конечной реакции существенно превосходит энергию, поглощенную зрительным пигментом. Поглощение света инициирует цепь реакций, черпающих энергию из метаболизма. Тем самым зрительное возбуждение является результатом усиления светового сигнала, попадающего в сетчатку. Фоторецептор служит биологическим эквивалентом фотоумножителя, который преобразует кванты света в электрический сигнал с большим усилением и низким шумом (см. гл. 7). И фоторецептор, и фотоумножитель достигают большого коэффициента усиления с помощью каскада стадий усиления. Зрительные пигменты представляют собой интегральные мембранные белки, которые находятся в плазме и мембранах дисков внешнего сегмента фоторецептора. Фотоизомеризация ретиналя вызывает серию конформационных изменений в связанном с ним белке и тем самым образует или раскрывает ферментативный активный центр. Следует каскад ферментативных реакций, которые в конце концов дают нервный импульс. Электрический ответ начинается с кратковременной гиперполяризации, вызванной закрытием нескольких сотен натриевых каналов в плазматической мембране. Таким способом молекулы-посредники (мессенджеры) передают информацию от диска рецептора к мембране плазмы. Вероятным кандидатом на роль мессенджера является богатый энергией циклический фосфат цГМФ (гуанозин-3, 5 -цикломонофосфат), возможно, в сочетании с ионами Са +. Было показано, что катионная проводимость плазматических мембран палочек и колбочек прямо контролируется цГМФ. Таким образом светоиндуцированные структурные изменения диска активируют механизм преобразования, который сам генерирует потенциал, распространяющийся по плазматической мембране. В настоящее время детали механизмов преобразования и усиления продолжают исследоваться. Была предложена схема, основной упор в которой делается на центральную роль фосфодиэстеразы в процессе контроля за кон- [c.241]


    На первой стадии образование батородопсина происходит за времена порядка десятков пикосекунд, а каждая последующая в 10 —10 раз медленнее предыдущей. Согласно современным представлениям, изменения обусловлены стерической невозможностью для прямого а11-гра с-ретиналя поместиться на поверхности опсина. Лишь изогнутый 11-4<ис-ретиналь вписывается в белок. Поглощение кванта света приводит к фотоизомеризации и тем самым к напряженным структурам, а в конце концов — к расщеплению химической связи между белком и хромофором. Переход к батородопсину влечет за собой изомеризацию ретиналя с образованием почти аИ-граис-формы, но такой, которая еще не релаксировала к самой низкоэнергетической геометрии. Более сильно релаксировавший а11-гранс-изомер появляется на стадии люмиродопсина. На каждой стадии белковый скелет перегруппировывается заметно выраженные изменения, связанные одной или более углубленными внутрь карбоксильными группами, становятся видимыми в метародопсине I. Образование метародопсина И сопровождается депротонированием шиффова основания, а также существенными изменениями липидной структуры. Именно метародопсин II з Jпy кaeт следующий набор биохимических стадий, которые мы коротко рассмотрим. Изменения оптического поглощения, по-видимому, согласуются с представленной картиной. Понижение энергии возбужденного состояния вследствие взаимодействия ретиналя с опсином приводит к длинноволновому сдвигу соответствующей полосы поглощения, причем чем сильнее взаимо-дейс№ие, тем сильнее сдвиг. Когда последовательно образуют- [c.239]

    При обработке нативного родопсина боргидридом натрия реакция восстановления бывает выражена довольно слабо, но после выцветания белка восстановление протекает быстро и ретиналь ковалентно связывается с белком с образованием вторичного амина. Это означает, что в родопсине ретиналь связан с белковой частью молекулы через шиффово основание. Попытки идентифицировать аминогруппу, к которой присоединено это основание, дали противоречивые результаты. [c.64]

    Витамин А-альдегид (ретинен, ретиналь) является пигментом зрительного пурпура. Он был выделен Вальдом [14] и исследован Мортоном [15]. Путем окисления витамина А перманганатом калия [16] или еще лучше двуокисью марганца [17] получают витамин А-аль-дегид-2,3,4,5-тетра транс (ретиналь), температура плавления 61—62° С шах=368 нм, [% = 1050 (в этиловом спирте) [18] по другим источникам [17] Хшах = 369 нм, Е °см = 1685 — в петролейном эфире или [8] температура плавления 57 и 65° С (диморфная форма) Х ах = 381 нм — в спирте. [c.13]

    Цветное зрение ассоциируется скорее с колбочками, чем с палочками. Как мы уже отмечали, максимум поглощения иодопсина незначительно смещен в длинноволновую область по сравнению с максимумом поглощения родопсина палочек. Чувствительность колбочек меньше, чем палочек. Спектральная чувствительность глаза, как и ожидалось, сдвигается в сторону больших длин волн при переходе от тусклого к яркому свету. Позвоночные воспринимают цвет посредством системы цветного зрения, опирающейся на три основных цвета. Должны участ-сдвать три различных пигмента колбочек, поглощающие в синей, зеленой и красной областях спектра. Хотя микроспектроскопия показывает наличие ряда пигментов, выделить их не удается. Вероятно, пигменты очень сходны с родопсином палочек. Один подход к изучению структуры белков связан с исследованием кодирующих их ДНК и определением таким способом их аминокислотных последовательностей. Заряженные аминокислоты, расположенные вблизи п-системы ретиналя, изменяют энергии основного и возбужденного электронных состояний, а установленные структуры пигментов колбочек не противоречат модели, согласно которой спектр поглощения ретиналя испытывает спектральные сдвиги при взаимодействии хромофора с соседними заряженными аминокислотами. Каждая кол- [c.240]

    НЫ — это белки с молекулярной массой около 40 000. Родопсин (бычий или овечий) имеет 348 аминокислотных остатков, сгруппированных в виде семи преимущественно гидрофобных сегментов, которые проходят от одной до другой стороны фоторецепторной мембраны. Связь между белковым скелетом и ретиналем формируется при конденсации альдегида с е-группой ли-зинового остатка вблизи конца белковой цепи (на 296 месте в цепи или эквивалентном) с образованием шиффова основания  [c.238]

    Все экзоциклические двойные связи имеют транс-конфигурацию, за исключением ретиналя, в котором предпоследняя двойная связь имеет / --конфигурацию цис- [c.48]

    Положение основных максимумов поглощения ретиналей и зрительных пигментов [c.64]

    Поглощение света сетчаткой глаза вызывает ряд последовательных превращений, которые приводят к изомеризации П-цис-ретиналя, в полный транс-ретиналь, а затем к его восстановлению до витамина А совместным действием НАД-Нг, т. е. восстановленной формы дифосфопиридиннуклеотида и алкогольдегидроге-назы. Регенерация цис-форм ретиналя проходит путем окисления витамина А кислородом при помощи дыхательных ферментов. Мы видим, что энергия света используется в процессе зрительного восприятия при помощи сложного устройства палочек сетчатки, в основе которого находится каркасная структура липопротеиновых дисков. Она при этом частично аккумулируется в виде химической энергии полного трансретиналя, внося тем самым свой вклад в затрату энергии на восстановление ретиналя до витамина А. [c.136]


    ХРОМОПРОТЕИДЫ (хромопротеины), сложные белки, содержащие небелковые хромофорные компоненты, напр, порфирины в гемоглобине и цитохроме с, ретиналь в родопсине. Взаимод. хромофорного компонента с белком м. б. как ковалентным, так и нековалентным. ХРОМОФОРЫ, ненасыщенные группы (напр., К = N02, N = 0, СН = СН, С = 0), к-рые, согласно хромофорной теории О. Витта (1Я76), ответственны за окраску орг. соединений. По этой же теории интенсивность окраски красителя повышается цри наличии в молекуле электроно-донорных групп (т. н. ауксохромов), напр. ОН, ЗН, КН2, [c.670]

    СЯ все более напряженные структуры люмиродопсина и метародопсинов, сдвиг спектра становится все меньше и максимум поглош.ения перемещается в коротковолновую область. В случае батородопсина, который поглощает при чуть больших длинах волн, чем родопсин, его уровень основного электронного состояния может быть расположен несколько выше по энергии, чем у исходного родопсина, из-за напряженной пространственной конфигурации молекулы. Цикл завершается медленной тепловой изомеризацией а11-транс-ретиналя в 11-4 ас-изомер, который спонтанно соединяется с опсином. В случае необходимости дополнительное количество ретиналя образуется из витамина А. [c.240]

    Вовлеченные в процесс цис-транс-изомеризации электронные состояния не установлены достаточно определенно. Хотя при импульсном фотолизе аП-гранс-ретиналя наблюдали коротко-жнвущий спектр, согласующийся со спектрами триплетных состояний, доказательств образования триплетных состояний при изомеризации родопсина нет. Возможно, уровни (п, я ) лежат над уровнем возбужденного состояния (вероятно, состояния я, я ) в протонироваином шиффовом основании, но ниже, чем в свободном альдегиде, так что триплетные состояния образуются лишь в свободном ретинале. Представляется вероятным, что в фотовозбужденном ретинальном хромофоре родопсина происходит перенос положительного заряда от шиффова основания к сопряженной л-системе ретиналя. [c.240]

    Эмпирическая формула витамина А1 — С20Н30О. Спиртовая функция витамина А1 установлена путем окисления его в альдегид (ретиналь). При каталитическом гидрировании витамин А образует пер гидровитамин А.1 с эмпирической формулой С20Н40О, что указывает на наличие пяти двойных связей. При окислении озоном из одной молекулы витамина А1 получают одну молекулу героновой кислоты, что обусловлено содержанием в молекуле одного кольца Р-ионона. [c.11]

    Хромофором родопсина является 1 Ьцыс-ретиналь, который под действием света изомеризуется [схема (13-34)] в полностью транс-рети-наль. Последний отщепляется от белковой части молекулы — апобелка опсина, который далее может самопроизвольно рекомбинировать с 11- [c.63]

    Известны и другие, родственные родопсину зрительные пигменты. Опсины колбочек в комплексе с 11-цис-ретиналем называют порфи-ропсинами обычно они поглощают свет с несколько большими длинами волн, чем родопсин . У отдельных пресноводных видов хромофором зрительных пигментов (иодопсинов) является 3-дегидроретнналь. Положение максимума поглощения зрительных пигментов зависит как от природы связанного альдегида, так и от природы белка, причем последний оказывает больший эффект (табл. 13-3). Таким образом, ре-тинальсодержащие пигменты поглощают свет в широком диапазоне длин волн, охватывающем интервал 467—528 нм (18 900—21 400 см ). [c.64]

    Одни эксперименты указывали на участие е-аминогруппы опсина, другие— аминогруппы фосфатидилэтаноламина. Недавно, медленно восстанавливая необесцвеченный родопсин с помощью цианборгидрида, удалось получить единственный продукт, анализ которого позволил заключить, что шиффово основание в нативном пигменте образовано по аминогруппе лизина [133]. Согласно результатам исследований модельных систем, сильный батохромный сдвиг спектра поглощения зрительных пигментов относительно спектра свободного ретиналя обусловлен наличием в последних сильно протонированного шиффова основания и сильным взаимодействием между полиеновой цепью ретиналя и белком. [c.65]

    Первое превращение, зарегистрированное с помощью лазерного ф леш-фотолиза и пикосекундной спектроскопии [141], протекает за б-Ю с (6 пс). Максимум поглощения образующегося батородопсина (прелю-миродопсина) сдвинут в сторону больших длин волн (батохромный сдвиг). Это свидетельствует об увеличении степени сопряжения, наблюдающемся, например, при изомеризации родопсина в полностью траяс-ретиналь [уравнение (13-34)]. Маловероятно, однако, чтобы такое превращение могло произойти за столь короткое время, однЙко быстрое образование напряженного полностью транс-ретиналя возможно [141а]. Не исключен и простой перенос заряда с образованием карбоний-иона > [схема (13-36)]. [c.65]

    Природа первой, фотохимической стадии, равно как и дальнейших превращений, идущих в темноте, пока точно неизвестна [141, 144]. Последовательность реакций (13-35) можно остановить на разных стадиях понижением температуры. При определенных условиях в этой последовательности появляется дополнительная стадия. Так, при 7 К первым наблюдаемым продуктом служит гипсородопсин, поглощающий при 437 нм (22 900 см ). Большой интерес представляет этап превращения метародопсина I в метародопсин II, поскольку это самая медленная из стадий, которая еще могла бы служить для возбуждения нервного импульса (он проходит вдоль палочки до синапса примерно за 1 мс). Имеются указания, что этот этап сопровождается конфор-мационными изменениями. Представления о природе последующих стадий, приводящих к высвобождению гранс-ретиналя, носят довольно разноречивый характер. Однако эти стадии слишком медленные, чтобы играть заметную роль в инициации нервного импульса. [c.66]

    Каков возможный механизм инициации нервного импульса последовательностью реакций, приведенных на схеме (13-35) Проще всего предположить, что коиформационное изменение в молекуле ретиналя в процессе изомеризации 11-г Ыс-ретиналя в полностью гранс-ретиналь [схема (13-34)] индуцирует изменение конформации белка, что приводит к появлению у последнего ферментативной активности. Ферментом, инициирующим каскад химических превращений, кульминацией которых является нервный импульс, мог бы быть метародопсин П, но в пользу этого предположения нет никаких экспериментальных данных. Не исключено, что индуцированные конформационные изменения в молекуле белка открывают канал в мембране диска и какое-то вещество диффундирует по этому каналу наружу. В качестве возможного кандидата на роль указанного вещества все чаще рассматривается Са +. Расстояние от мембран дисков до плазматической мембраны палочки таково, что высвободившееся вещество успеет достичь плазматической мембраны (где и возбуждается нервный импульс) за счет диффузии. [c.66]

    Поскольку под действием света из зрительных пигментов высвобождается полностью гранс-ретиналь, должей существовать механизм образования 1 Ьцыс-ретиналя, необходимого для регенерации этих пигментов. С одной стороны, из кровотока постоянно поступает 11-цис-ретинол и окисляется в ретиналь. Таким образом, изомеризация может происходить в других частях организма. Однако имеются веские данные в пользу того, что процесс изомеризации протекает главным образом в самой сетчатке. У головоногих внутренние членики рецепторных клеток содержат второй пигмент, ретинохром, который осуществляет обратное превращение полностью гранс-ретиналя в 11-цыс-рети-наль [149]. Согласно имеющимся данным, в сетчатке млекопитающих может происходить образование шиффова основания между полностью гранс-ретиналем и фосфатидилэтаноламином, что обусловливает превращение под действием света ретиналя в П-цис-форму [150]. [c.68]


Смотреть страницы где упоминается термин Ретиналь: [c.190]    [c.135]    [c.136]    [c.215]    [c.239]    [c.239]    [c.48]    [c.48]    [c.49]    [c.49]    [c.101]    [c.102]    [c.630]    [c.64]    [c.64]    [c.64]    [c.64]    [c.65]    [c.67]    [c.192]    [c.268]    [c.268]   
Основы и применения фотохимии (1991) -- [ c.237 , c.238 ]

Биохимия Том 3 (1980) -- [ c.64 , c.68 , c.111 ]

Введение в химию природных соединений (2001) -- [ c.192 , c.193 , c.268 , c.269 ]

Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.523 ]

Общая органическая химия Т.11 (1986) -- [ c.537 ]

Органическая химия (1979) -- [ c.769 ]

Справочник биохимии (1991) -- [ c.2 , c.103 ]

Биоорганическая химия (1991) -- [ c.453 , c.478 ]

Микробиология Издание 4 (2003) -- [ c.419 ]

Биологическая химия (2002) -- [ c.157 ]

Биохимия (2004) -- [ c.97 ]

Органическая химия (2001) -- [ c.257 ]

Теоретические основы биотехнологии (2003) -- [ c.270 , c.280 ]

Общая органическая химия Том 2 (1982) -- [ c.488 , c.539 , c.543 ]

Молекулярная биология клетки Том5 (1987) -- [ c.83 , c.124 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.276 , c.291 , c.712 , c.836 ]

Органическая химия Издание 2 (1980) -- [ c.196 ]

общая органическая химия Том 2 (1982) -- [ c.488 , c.539 , c.543 ]

Химия биологически активных природных соединений (1976) -- [ c.180 ]

Хроматография Практическое приложение метода Часть 1 (1986) -- [ c.252 , c.261 , c.264 ]

Биология Том3 Изд3 (2004) -- [ c.326 , c.326 ]

Химия биологически активных природных соединений (1970) -- [ c.25 ]

Биофизика Т.2 (1998) -- [ c.389 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.343 ]

Биологические мембраны Структурная организация, функции, модификация физико-химическими агентами (2000) -- [ c.136 ]

Введение в биомембранологию (1990) -- [ c.124 , c.155 ]

Микробиология Изд.2 (1985) -- [ c.267 ]

Биоэнергетика Введение в хемиосмотическую теорию (1985) -- [ c.145 , c.147 ]

Структура и функции мембран (1988) -- [ c.65 ]

Биохимия мембран Биоэнергетика Мембранные преобразователи энергии (1989) -- [ c.102 , c.106 , c.107 , c.109 , c.113 , c.117 ]

Молекулярная биология клетки Сборник задач (1994) -- [ c.224 ]

Основы биохимии (1999) -- [ c.151 , c.152 , c.418 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.343 ]

Биологическая химия (2004) -- [ c.546 , c.547 , c.548 , c.549 ]




ПОИСК





Смотрите так же термины и статьи:

Анион-радикалы ретиналя

Витамин альдегид ретиналь

Полностью гранс-ретиналь

Полностью гранс-ретиналь максимум поглощения в Половое размножение у бактерий

Реппе реакция Ретиналь

Реппе реакция трянс-Ретиналь

Ретиналь Ретинол также Витамин

Ретиналь, полный транс-изомер

Ретиналь-изомераза

Свет вызывает изомеризацию ретиналя

Транс-ретиналь

Фотоизомеризация ретиналя

ретиналь хромофор всех известных органов зрения



© 2025 chem21.info Реклама на сайте