Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

генерирование

    Оба этих рисунка подтверждают достаточную для инженерной практики достоверность предлагаемой модели для описания реального процесса диспергирования в условиях акустического воздействия. Действительно, с течением времени в результате взаимодействия частиц твердой фазы с кавитационными пузырьками происходит рост числа частиц вследствие их разрушения, и темп этого роста сдерживается процессами агрегирования (рис. 3.3). Параллельно, спустя период индукции (из-за непрерывного генерирования) число кавитационных пузырьков остается постоянным (рис 3.4). Незначительное снижение их числа связано с уже отмеченными при построении факторами. Тем не менее, это снижение в пределах времени диспергирования не может существенно сказаться на качестве целевого процесса. [c.125]


    Генерирование и превращение фосфониевых и сульфониевых илидов [c.250]

    Интересна организация штурма. В непринужденной обстановке группа не стесняющихся друг друга людей наперебой высказывают идеи. Существует не только запрет на критику, запрещено и приводить доказательства, поэтому генерирование идей происходит в быстром темпе. В пиковые минуты коллективного вдохновения возникает своеобразный ажиотаж, идеи выдвигаются как бы непроизвольно, прорываются и высказываются смутные догадки, предположения. Именно эти стихийно прорывающиеся идеи считаются наиболее ценной продукцией мозгового штурма. [c.23]

    Удовлетворительное совпадение двух рядов значений э.д.с. подтверждает справедливость представлений о природе происхождения электрической энергии в гравитационных цепях. Э.д.с. гравитационных цепей можно увеличить до нескольких милливольт, например при помощи центрифугирования. Э.д.с. и в этом случае очень мала, и лишь небольшая доля механической энергии, расходуемой на работу центрифуги, переходит в электрическую. Такие цепи не имеют практического значения, но они интересны тем, что говорят о возможности генерирования электрической энергии в системах с химически одинаковыми электродами. [c.194]

    Этот процесс тем вероятнее, чем устойчивее сольватированные электроны в данном растворителе L и чем отрицательнее потенциал катода. Для стабильного генерирования сольватированных электронов он должен быть близок к стандартному потенциалу электронного электрода в данном растворителе. [c.444]

    Совершенно иной подход к генетической типизации был предложен нами. Каждая нефтегазоматеринская толща генерирует нефть своего генетического типа. Даже если разные нефтематеринские породы имеют ОВ одного и того же, например морского, генезиса, оно должно различаться по определенным параметрам — "генам" и эти параметры должны наследоваться нефтями. Нефти, генерированные разными нефтематеринскими толщами, обязательно должны различаться по специфическим признакам, которые они унаследовали от ОВ. Поэтому не могут быть использованы для генетической типизации приведенные выше критерии различия нефтей из морского и "континентального" ОВ, так как эти параметры характерны для любого ОВ, из пород любого возраста и любого бассейна, если оно морского или континентального генезиса. Как показали наши исследования, наиболее информативны для генетической типизации структурные особенности УВ высококипящих фракций, т. е. углеродный скелет молекул, изотопный состав углерода и серы. [c.9]

    УВ в них и их эмиграции, состав ОВ и другие факторы влияют на количество генерированных и эмигрировавших УВ, поэтому подчас бывает трудно выявить генетические различия нефтей по количеству парафино-нафтеновых или нафтено-ароматических УВ. Эти различия более четко отмечаются по структуре УВ (см. рис. 2). В нефтях и ОВ пород в одноименных толщах наблюдаются близкие содержания парафиновых УВ и моноциклических нафтенов и почти идентичные — три-, тетра-, пента-и гексациклических нафтенов. Следует отметить, что содержание этих УВ в ОВ пород в каждой нефтематеринской толще независимо от глубины залегания, температуры и стадии катагенеза почти не меняется. [c.35]


    Геохимические особенности ОВ и генерируемых им углеводородных флюидов закладываются на I этапе цикла. Большое значение имеет состав исходной биомассы, являющейся источником ОВ, ее количество, скорость захоронения, геолого-геохимическая обстановка бассейна осадконакопления. Именно на I этапе каждого цикла наряду с общими чертами закладываются специфические особенности состава ОВ, которые затем наследуются нефтью, генерированной данным ОВ. [c.105]

    В отсутствие внешних воздействий (электромагнитного излучения, быстрых электронов и др.) образование активных свободных радикалов происходит вследствие соударения двух молекул, движущихся с высокими скоростями, когда акты возбуждения молекулы и ее диссоциации являются слитными, или вследствие взаимодействия двух молекул, находящихся в возбужденном состоянии по реакции (О, О") — гомогенный механизм генерирования свободных радикалов. [c.29]

    Как отмечалось выше, непосредственная связь между адсорбционной способностью присадок и эффективностью их противоизносного действия наиболее отчетливо проявляется в тех случаях,. когда механизм действия присадки имеет преимущественно физический характер, либо когда в процессе трения не происходит генерирования такого количества тепла, которое могло быть достаточным для заметного проявления химической активности присадок. Вместе с тем температурные условия работы современных смазочных масел зачастую оказываются довольно жесткими. Поэтому при подборе присадок наряду с их поверхностной активностью (адсорбируемостью) необходимо учитывать и реакционную способность присадок. Более того, в зависимости от режима трения последняя может явиться определяющим фактором в механизме действия той или иной присадки. [c.258]

    Реакционная способность присадок и ее роль в механизме противоизносного действия. При значительных скоростях скольжения и больших удельных давлениях, характерных для большинства современных узлов трения, на площадях контакта происходит значительное генерирование тепла, интенсифицирующее развитие различных химических процессов на трущихся поверхностях. В этих условиях большое значение наряду с адсорбционной способностью присадок приобретает их химическая активность. С ней связана способность присадок предотвращать задир трущихся поверхностей, между которыми по разным причинам нарушается масляная пленка [276.  [c.258]

    Генерирование и превращение илидов 251 [c.251]

    Установлено также, что склонность топлив к электризации в значительной степени зависит от их удельной электрической проводимости. Эта зависимость имеет экстремальный характер, достигая максимума накопления зарядов при проводимости около 10 пСм/м, а при 50 пСм и более накопления зарядов в топливе практически совсем не происходит, так как скорость их релаксации превьппает скорость генерирования. [c.166]

    К эвристическому методу поиска новых идей относится так называемая мозговая атака. Цель мозговой атаки при конструировании — стимулировать быстрое генерирование большого числа новых решений. С этой целью отбирают группу компетентных лиц, перед которым ставят определенную задачу, причем оговаривают, что для решения принимают любые идеи, критика которых запрещается. При проведении сеанса мозговой атаки (длительность около [c.33]

    Мы уже показали, что в случае МФК алкилирование и генерирование карбенов в присутствии гидроксида натрия могут проходить по трем мало отличающимся механизмам, однако ясно, что МФК включает целый ряд и других механизмов. [c.63]

    Генерирование и превращение илидов 263 [c.263]

    I6. Генерирование и превращение илидов 257 [c.257]

    Генерирование и превращение илидов 259 [c.259]

    Генерирование и превращение илидов 261 [c.261]

    В основе метода — четкая мысль процесс генерирования идей необходимо отделить от процесса их оценки. При обсуждении задачи многие не решаются высказать смелые, неожиданные идеи, опасаясь насмешек, ошибок, отрицательного отношения руководителя и т. д. Если же такие идеи все-таки высказываются, их зачастую подвергают уничтожающей критике другие участники обсуждения идеи гибнут, не получив развития. Осборн предложил вести генерирование идей в условиях, когда критика запрещена наоборот, всячески поощряется каждая идея, даже шуточная или явно нелепая. Для этого отбирают небольшую и по возможности разнород- [c.22]

    Появление методов активизации перебора вариантов вызвало большие надежды. Казалось, найден простой и универсальный усилитель интеллекта . Достаточно повысить уровень шума — погасить несложными приемами психологическую инерцию, уговорить специалистов смелее выходить за рамки своей специальности, пришпорить процесс генерирования идей — и под силу будет решение любой задачи... В фантастическом рассказе Уровень шума , написанном Р. Джоунсом в середине 50-х годов, психолог Бэрк помогает решить проблему управления гравитацией. И когда эксперимент успешно Завершается, Бэрк говорит Мы расшатали ваши умственные фильтры, и в результате получился ответ. Метод сработал, он будет действенным всегда. Все, что необходимо сделать, это избавиться от лишнего груза предрассудков, от окаменевшего мусора в голове, измеиить произвольную настройку ваших умственных фильтров в отношении других вещей, которые вам всегда хотелось сделать, и тогда удастся найти нужный ответ на любую проблему, которую вы только пожелаете исследовать . И растроганный физик Нэгл отвечает Если мы научимся использовать максимальный уровень шума человеческого ума, сможем покорить всю вселенную . [c.29]


    Проблемодатель не коснулся главного — технологии генерирования новых художественно-технических идей. А она предельно несовершенна, эта технология. Художник перебирает варианты Попробуем так... Ах, не получилось .. Ладно, поробуем иначе... Ориентиры для поиска дает опыт. Но этот же опыт навязывает сильнейшую психологическую инерцию поиск вольно или невольно идет в привычном направлении, робкие попытки свернуть в сторону тут же пресекаются. Проблемодатель , однако, и не помышляет затрагивать методику придумывания нового, он хочет сохранить перебор вариантов, как-то скомпенсировав его несовершенство. Отсюда подсказка используй дисплей, создай автоматизированное рабочее место, веди поиск в союзе с мощной ЭВМ... [c.38]

    В начале бО-х годов у меня возникла идея собрать гипотезы, предвидения, концепции, проблемы и ситуации, разбросанные в тыгячах книг. НФЛ накопила огромный опыт работы с воображением — и было бы просто неразумно не исследовать и не использовать этот уникальный опыт. Собрать, расклассифицировать, выяснить механизмы генерирования идей, найти причины досадных ошибок и объяснения блистательных удач... Так начал складываться патентный фонд фантастики. [c.130]

    Ныне Регастр научно-фантастических идей, ситуаций, проблем, гипотез включает тысячи единиц учета , образующих систему из 13 классов, 92 подклассов, 668 групп и 2980 подгрупп. И занятия по РТВ — с конца 60-х годов — опираются на данные, полученные при изучении этого ценного, в высшей степени интересного, теперь уже крупного и хорошо организованного массива информации. Регистр позволил выявить многие приемы генерирования новых идей. Стало возможным включить в курс РТВ изучение этих приемов, насытить занятия задачами и упражнениями, которые развивают навыки управления воображением. [c.131]

    Стадия поиска технологического процесса начинается с изучения литературы, патентов и информации об имеющемся практическом опыте. Для генерирования идей важное значение при (ТОМ приобретает обмен мнениями в разных кругах специалис- 32 [c.232]

    Влияние состава ОВ на генетические особенности нефтей, генерированных данным ОВ, следует рассмотреть в разных аспектах с точки зрения первоначальных различий в составе исходной биомассы и унаслет дованности этих различий ОВ древних пород и нефтью. [c.29]

    Интересные данные о различии фациально-генетических типов ОВ в разнь(х циклах нефтегазообразования приведены К.Ф. Родионовой и С.П. Максимовым [23], которые отмечали, что в кембрийском, ордовикском и силурийском циклах раннепалеозойского мегацикла нефтегазообразования нефтематеринские породы содержали только сапропелевый тип ОВ. Следует, однако, отметить, что состав его в разные периоды раннего палеозоя был неидентичен, на что указывают различия в углеводородном составе генерированных ими нефтей. В пределах среднепозднепалео- [c.105]

    Различия в составе УВ из ОВ различного фациального генетического типа, обусловленные неодинаковым составом исходного органического материала и в первую очередь разными условиями его захоронения и преобразования, наследуются нефтями. В связи с этим каждому циклу нефтегазообразования соответствуют нефти со своими специфическими чертами, свой генетический тип. Следует, однако, отметить, что в одном и том же цикле нефтегазообразования, но протекавшем в разных нефтегазоносных бассейнах, состав ОВ даже одного фациально-генетического типа может быть неодинаков. Например, битуминозные вещества, генерированные гумусовым ОВ визейских нефтематеринских толщ Волго-Уральской и Днепровско-Донецкой НГП, различаются по количеству и составу сероорганических соединений, количеству порфиринов и другим параметрам. Поскольку нефти наследуют от ОВ нефтематеринских пород специфические черты а, как было показано выше, нефтематеринские породы разных циклов по составу ОВ неодинаковы, то и нефти, генерированные этими ОВ, также различаются. Поэтому одним из главных критериев цикличности процессов нефтегазообразования является наличие в разрезе нефтей разных генетических типов. [c.106]

    Наряду с генерированием тепла при трении имеются и другие превращения энергии возбуждение электрических и магнитных полей, образование термотоков, появление звуковых колебаний. Однако их энергоемкость мала. В зависимостн от условий трения преобразование энергии имеет разную природу, а энергия может концентрироваться в различных частях трибосистемы. Так, если при жидкостном (гидродинамическом) трении энергетические преобразования сосредоточены в слое смазки, то в условиях граничного трения они протекают в тонких поверхностных слоях смазочного материала и тончайших (толщина 10- —10 см) слоях металла. Их сочетание играет роль третьего тела в трибосопряжении. [c.248]

    Первоначально МФК проводился исключительно с использованием водной и органической фаз. Эту методику некоторые авторы называют МФК в системе жидкость/жидкость . Как упоминалось в предыдущих разделах, часто происходит соэкст-ракция некоторого количества гидратной воды, которая может мещать желаемой реакции, подавляя ее и/или изменяя ее направление. Поэтому можно было предполагать, что в таких случаях следовало бы отказаться от использования воды и проводить МФК с твердыми солями. Подходящим примером является генерирование дихлоркарбена из трихлорацетата натрия — реакция, проводящаяся обычно в абсолютированном диметокси-этане (стоимость которого высока)  [c.41]

    Совокупность напряжений, действующих в указанном контакте в определенных условиях, может превзойти предел усталости материала,- что приведет к зарождению усталостных трещин. При этом глубина возникновения трещин, как отмечалось выше, ЦО разным причинам (технологические примеси, цементация) может отличаться от. теоретически рассчитанной. Например, в случае цементации трещина берет свое начало на границе цементированного слоя и основного материала. Предполагают, что в ме сте зарождения трещин происходит модифицирование структуры материала вследствие значительного генерирования тепла. При этом установлено, что твердость пит-тинговой зоны на 30—35% выше твердости основного металла [269, 271]. [c.252]

    В противоположные концы сосуда впаяны анод и катод. Катод сделан из вольфрамовой проволоки в виде спирали. Спираль накаливается электрическим током и является источником свободных электронов. Лнод — массивный медный стержень, обращенный своим торцом к катоду. В торец анода впаивается тонкая пластинка какого-либо металла, называемая зеркалом анода. Схема рентгеновской трубки и ее включение для генерирования рентгеновских лучей показана на рис. 55. [c.106]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    В качестве катализаторов для генерирования дихлоркарбена были предложены оксиды аминов [85]. Их же использовали при получении бензилацетата из бензилхлорида [86]. В том и в другом случае настоящим катализатором была, очевидно, четвертичная аммониевая соль, образовавшаяся in situ. В случае реакции этерификации предложена следующая последовательность стадий  [c.78]

    Кнёхель и сотр. 93, 104, 105, 107] провели обширные исследования активации анионов в полярных апротонных средах как в гомогенных, так и в условиях МФК. В абсолютном ацетонитриле гомогенные реакции между бензилхлоридом и ацетат-ионом, генерированном из нескольких щелочных ацетатов и [c.40]

    Первоначальные данные, полученные в лаборатории авторов [28] об одинаково быстром алкилировании бутилцианида как с помощью пикрата, так и с помощью хлорида тетрабутиламмония, оказались ошибочными. Пикрат работает очень плохо. Однако при генерировании дигалокарбенов пикраты являются хорошими катализаторами. Оказалось, что в этой реакции ион пикрата исчезает, заменяясь в конце концов на хлорид. [c.59]

    Теперь, разобравшись с механизмом алкилирования в условиях МФК, перейдем к рассмотрению механизма генерирования дигалокарбенов. Мы тщательно изучим все факты, относящиеся к генерированию дихлоркарбена, однако полученные выводы равным образом будут применимы ко всем карбенам, образующимся при межфазных реакциях. Проведение конкурентных реакций показало, что дихлоркарбен, генерируемый при МФК, идентичен дихлоркарбену, получаемому другими методами [2, 29], и не является карбеноидом. Кроме того, можно показать, что в условиях МФК карбен СХ может, обменивая галогены, превращаться в СХг и С 2. Надо добавить, что в отличие от всех других методов генерирования дигалокарбенов при МФК реакция проходит при комнатной температуре как необратимый быстрый одностадийный процесс. В то врем как смесь трег-бутилата калия с хлороформом реагирует при —20 °С независимо от присутствия или отсутствия субстрата, а Ь1СС1з распадается обратимо даже при такой низкой температуре, как —72 °С, реакционная смесь, используемая в МФК — хлороформ/конц. МаОН/катализатор, — в том случае, когда отсутствует реактант, взаимодействующий с карбеном, сохраняет свою способность давать СС12 даже при комнатной температуре в течение нескольких дней. Поскольку между хлороформом и концентрированным раствором ЫаОО/ОгО наблюдается очень, быстрый Н/О-обмен, который происходит и без всякого катализатора, то первой стадией должно быть депротонирование на границе раздела фаз. Предположительно при этом образуется двойной слой того же типа, что и обсуждавшийся выше  [c.61]

    При кипячении алкенов с концентрированными водными растворами НХ и гексадецилтрибутилфосфонийгалогенидов в течение от 15 мин до 50 ч происходит присоединение НС1, НВг или HF к олефинам в соответствии с правилом Марковникова. В этом случае экстрагируется комплекс с водородной связью [R4P+X---HX ] [1634]. Если для генерирования хлора использовать НС1 и Н2О2 в присутствии хирального катализатора, то [c.226]


Смотреть страницы где упоминается термин генерирование: [c.23]    [c.25]    [c.6]    [c.120]    [c.34]    [c.59]    [c.164]    [c.14]    [c.14]    [c.62]    [c.74]    [c.76]    [c.253]   
Применение поглощения и испускания рентгеновских лучей (1964) -- [ c.16 , c.20 ]




ПОИСК







© 2025 chem21.info Реклама на сайте