Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплайсинг нарушения

    Бывают случаи, когда точечные мутации и внутри интрона порождают нарушения в сплайсинге. Это обычно связано с появлением в результате такой мутации последовательности, напоминающей усредненный сайт для сплайсинга. В настоящее время, начиная с классических [c.55]

    Следовательно, мутации, ведущие к нарушению сплайсинга, играют существенную роль в возникновении ряда наследственных болезней человека. Очевидно, что раз они [c.56]


    По-видимому, в образовании лассо участвует последовательность сайта ветвления РНК, окружающая участвующий в реакции аденозин и способная образовывать комплементарную структуру с 5 -концом интрона (рис. 104). Внутренняя часть интрона, в ряде случаев достаточно протяженная, может быть безболезненно удалена без нарушения сплайсинга. Вопрос о том, какова судьба и возможная роль выщепляемых интронов, остается не ясным. [c.177]

    Вырезание интрона происходит очень точно это обеспечивается наличием сложной вторичной и третичной структуры РНК. Нуклеотидная последовательность интрона с учетом комплементарных взаимодействий отдельных участков может быть представлена в виде достаточно сложной структуры (рис. 99). Сходную структуру имеет интрон предшественника рРНК митохондрии. Замены отдельных нуклеотидов в составе интрона обнаруживают необходимость отдельных элементов его структуры для самосплайсинга. Например, нарушение комплементарности в районе А препятствует сплайсингу. Оказывается, что для правильного сплайсинга необходимы также комплементарные взаимодействия нуклеотидов (вне плоскости рисунка ) в элементах Б и В. Замена нуклеотида в районе Б, нарушившая комплементарность и сплайсинг, может быть компенсирована другой нуклеотидной заменой в районе В, если она восстановит комплементарные взаимодействия. Каталитические свойства определяются особой структурой РНК, создаваемой в результате комплементарных взаимодействий. [c.167]

    В осуществлении каждого из указанных процесов специфическое участие принимает ряд белков и нуклеиновых кислот, хотя конкретные молекулярные механизмы этих превращений еще не полностью раскрыты. Все три указанных процесса имеют важное значение в формировании зрелой молекулы мРНК. Однако наибольший интерес исследователи проявляют к выяснению молекулярного механизма сплайсинга, который должен обеспечить, во-первых, постепенное и высокоточное вырезание интронов из первичного транскрипта и, во-вторых, сшивание образующихся фрагментов-экзонов- конец в конец . Любые отклонения или смещения границ в процессе вырезания интронов и сшивания экзонов даже на один нуклеотид могут привести не только к глубокому искажению смысла в кодирующих последовательностях, но и к нарушению передачи генетической информации и развитию патологии. [c.490]

    Известно много типов р°-талассемии. При некоторых формах р°-талассемии делеций не обнаруживается. Следовательно, полное отсутствие Р-цепей, может быть, по-видимому, обусловлено мутациями, влияющими на транскрипцию или трансляцию. В одном случае мутация приводит к образованию нонсенс-кодона в положении 17, так что дефект проявляется на уровне трансляции. В другом случае нарушение затрагивает более раннюю стадию экспрессии гена ядерная РНК синтезируется, но мРНК в цитоплазме отсутствует. Причина этого-мутация, нарушающая сплайсинг мРНК (гл. 26). [c.272]


    Некоторые псевдогены имеют в целом такую же структуру, как и функционально активные гены, с обычным расположением последовательностей, соответствующих экзонам и интронам. Они становятся неактивными в результате мутаций, нарушающих одну или все стадии экспрессии гена. Эти изменения могут проявляться в виде нарушения инициирования транскрипции, препятствовать осуществлению сплайсинга на границах экзон—интрон или приводить к преждевременному терминированию трансляции. Обычно псевдоген несет несколько вредных мутаций, вероятно, потому, что ген, однажды перестав быть активным, стал объектом для дальнейшего накопления мутаций. Такие псевдогены были обнаружены во многих системах генов, включая гены глобинов, иммуноглобулинов, антигенов гистосовместимости и т.д. [c.278]

    При образовании мутантной РНК снижается общая эффективность сплайсинга кроме того, в.адре накапливается предшественник РНК, вообще не подвергавшийся сплайсингу. Отсюда следует вывод, что нарушение сплайсинга интрона 1 может привести к нарушению сплайсинга интрона 2 (это согласуется с данными о том, что интрон 1 удаляется первым см. ранее). Возможщ такой эффект обусловлен особенностями вторичной структуры РНК. [c.328]

    Что происходит с РНК, образовавшейся в результате неправильного сплайсинга Это до конца еще не установлено, и не исключено, что все зависит от конкретных обстоятельств. У больного талассемией такая РНК не накапливается в цитоплазме ретикулоцитов. Из этого следует, что либо предшественник РНК или продукт неправильного сплайсинга нестабилен либо нарушен ее транспорт из ядра в цитоплазму. Однако в клетках культуры ткани РНК, образовавшаяся в результате неправильного сплайсинга, транспортируется в цитоплазму столь же эффективно, как и нормальная мРНК. Не известно, присоединяется ли она к полисомам, но если и присоединяется, то на ней транслируется аномальный белок, синтез которого терминируется преждевременно. (Осуществление сплайсинга по мутантному сайту приводит к появлению в данной рамке считывания бессмысленного кодона.) [c.328]

    Целый ряд человеческих генетических заболеваний связан с изменениями в экспрессии генов а- и р-подобных глобиновых кластеров. К таким заболеваниям относится талассемия, при которой наблюдается в той или иной степени выраженное нарушение баланса синтеза а- и р-глобиновых цепей, приводящее к анемии различной тяжести. Классификация талассемических заболеваний основана на том, какие из генов оказались подвержены изменениям в уровне экспрессии. В случае а-та-лассемии различают формы а и а° в зависимости от того, происходит или вовсе не происходит синтез каких-либо а-глобиновых полипептидов. Аналогичным образом в случае Р-талассемии различают формы Р и р°. На основании изучения множества случаев талассемии можно утверждать, что мутации, вызывающее это заболевание, могут влиять на экспрессию соответствующих генов на любом уровне, начиная от стадии инициации транскрипции и до сплайсинга трансляции мРНК и образования стабильных глобиновых цепей. [c.233]

    Благодаря методам генной инженерии исследователи получили возможность использовать для изучения клеточных механизмов мутации человека. Например, известно, что группа наследственных заболеваний крови, объединяемых под названием талассемии, характеризуется резким падением уровня гемоглобина. Секвенирование ДНК 50 больных талассемией показало, что в большинстве случаев снижение уровня гемоглобина было вызвано нарушением в сплайсинге РНК. Единичные замены нуклеотидов, обнаруженные в ДНК, либо инактивировали сайт сплайсинга, либо приводили к возникновению нового такого сайта. Удивительно, но анализ мРНК этих же больных показал, что потеря сайта сплайсинга не ведет к его отменению оставшийся нормальным второй, участвующий в сплайсинге сайт, ищет поблизости подходящий участок и соединяется с ним. Нри этом может реализоваться несколько вариантов сплайсинга, т. е. мутантный ген способен детерминировать несколько измененных белков (рис. [c.159]

    Таким образом, сплайсинг представляет собой весьма пластичный процесс. Итак, мутация в эукариотической клетке может привести к тому, что с одного гена будет синтезироваться несколько разных новых белков, следовательно, клетка обладает возможностью весьма эффективно опробовать заложенные в ней генетические варианты. Благодаря этому сплайсинг РНК может играть решающую роль в эволюции высших эукариот. Сплайсинг у низших эукариот, например дрожжей, регулируется значительно более строго, что ограничивает вероятность появления новых мРНК в результате нарушения этого процесса. Следовательно, скорость дивергенции форм и функций у низших эукариот должна быть более медленной, чем у высших эукариот. [c.159]

    Разработанные в последние годы методы позволяют иногда прямо продемонстрировать мутационную перестройку на уровне ДНК (разд. 4.3.5). Все расширяющиеся возможности таких методов позволяют открывать новые типы мутаций, в частности вызывающие нарушения регуляции транскрипции, а также ошибочный сплайсинг первичных транскриптов. Большинство исследований этого типа было выполнено с системой 3-глобина человека, мутационные изменения которого проявляются фенотипически в виде группы заболеваний, называемых 3-талассемиями. Последние возникают вследствие или отсутствия ((3°), или недостаточности продукции 3-цепи (Р ). По мере того как количество ДНК-зондов для разных генов человека растет, все большее число мутаций становятся доступными для анализа на уровне ДНК. Мы уже знаем, что различные мутации, аналогичные найденным при гемоглобинопатиях, обнаружены при гемофилии и семейной гиперхолестеринемии. Можно ожидать, что в будущем природу мутационных изменений у человека будут изучать именно на уровне ДНК, а не на уровне генных продуктов. [c.231]


Рис. 9. Примеры мутаций, ведущие к нарушениям сплайсинга р-глоби-новой про мРНК и, как следствие, к р-талассемии Рис. 9. Примеры мутаций, ведущие к нарушениям сплайсинга р-<a href="/info/652037">глоби</a>-новой про мРНК и, как следствие, к р-талассемии
    Во-первых, согласно многочисленным исследованиям разных наследственных болезней и генома человека в целом, можно говорить о многообразии видов мутаций в одном и том же гене, которые являются причиной наследственных болезней. У человека описаны следующие вцды генных мутаций, обусловливающие наследственные болезни миссенс, нонсенс, сдвиг рамки считывания, делеции, вставки (инсерции), нарушения сплайсинга, увеличение числа (экспансия) три нуклеотидных повторов. Любой из этих видов мутаций может вести к наследственным болезням. Даже одна и та же генная болезнь может быть обусловлена разными мутациями. Например, в гене муковисцидоза описано около 200 вызывающих болезнь мутаций (всего их около 900) следующих типов делеции, миссенс, нонсенс, сдвиг рамки считывания, на- [c.105]

    В гене муковисцидоза обнаружено около 900 мутаций, из них около 200— 300 дают патологический эффект (миссенс, делеции, нонсенс, сдвиг рамки считывания, нарушения сплайсинга). Наиболее частая мутация (до 70% всех случаев) — делеция 3 пар нуклеотидов, ведушая к отсутствию аминокислотного остатка в 508-м положении (отсюда название этой мутации — ДР508) полипептидной цепи. [c.141]


Смотреть страницы где упоминается термин Сплайсинг нарушения: [c.167]    [c.175]    [c.175]    [c.178]    [c.175]    [c.175]    [c.178]    [c.260]    [c.330]    [c.76]    [c.106]    [c.269]    [c.355]    [c.159]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.175 ]

Молекулярная биология (1990) -- [ c.175 ]

Гены (1987) -- [ c.328 ]




ПОИСК







© 2024 chem21.info Реклама на сайте