Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм молекулярной

    Теория Берка-Касселя не может объяснить состава продуктов крекинга большинства парафиновых углеводородов. В частности, эта теория не может объяснить влияния давления на крекинг. Не исключена, однако, возможность, что реакция крекинга парафинов протекает в действительности по обоим механизмам (молекулярному и цепному). В этом случае состав продуктов крекинга парафиновых углеводородов и не может соответствовать никакой из двух теорий (молекулярной или цепной) в отдельности. Во всяком случае подтверждение предсказания теории Берка о линейной зависимости скорости крекинга от числа углеродных атомов заставляет обратить внимание иа эту теорию. [c.20]


    При турбулентном режиме течения, вследствие статистического характера пульсационного движения, перенос массы в ядро потока считается аналогичным переносу массы по механизму молекулярной диффузии [401]. Эта гипотеза позволяет представить толщину турбулентного диффузионного слоя по тем же зависимостям, что и при молекулярной диффузии, но с коэффициентом эффективного турбулентного [c.160]

    Представляет интерес установить, почему не реализуется какой-либо из механизмов молекулярного взаимодействия углеводорода с кислородом. Можно записать, например, следующие бимолекулярные реакции  [c.25]

    Важную роль в технологических процессах играет, как известно, явление массопереноса, т. е. явление переноса массы вещества между двумя фазами. Существует несколько теорий процесса массопереноса через межфазную поверхность. Наибольшее распространение получила пленочно-пенетрационная теория, которая утверждает, что имеет место двойственный механизм диффузии. При малом времени контакта массообмен протекает как ряд неустановившихся процессов диффузии компонента от межфазной поверхности к элементарным вихрям сплошной фазы, соприкасающимся с поверхностью и проникающим в глубь сплошной фазы. При более длительном времени контакта действует механизм молекулярной диффузии через ламинарные пограничные пленки по обе стороны раздела фаз. [c.30]

    Если каждая из реакций системы происходит с помощью механизма молекулярной перегруппировки, то и механизм процесса в целом является молекулярным, [c.14]

    На первый взгляд может показаться, что протекание реакций по механизму молекулярной перегруппировки, т. е. в одну стадию, по крайней мере, для мономолекулярных реакций или реакций первого порядка (истинные мономоле-кулярные реакции всегда являются реакциями первого порядка в области достаточно высоких давлений), является более экономным или выгодным. Действительно, процесс перегруппировки связей, который состоит в разрыве одних и возникновении других связей, в пределах одной молекулы может происходить скомпенсированным путем, т. е. облегчаться за счет выгодных внутренних переходов, разрещен-ных квантовой химией. При этом для реакции может потребоваться меньшая энергия, чем энергия разрыва отдельных связей. Если бы эти.внутренне скомпенсированные переход, ды лежали в природе процесса разложения молекул органических соединений, то молекулярный механизм распада являлся бы единственным реальным путем распада этих веществ. [c.14]


    Несмотря на большую трудность реакции зарождения радикалов, радикально-цепной механизм распада может в целом оказаться более выгодным путем образования продуктов, чем механизм молекулярной перегруппировки благодаря необычайной легкости протекания вторичных реакций, в которых участвуют радикалы (если, конечно, длина цепи, т. е. среднее число вторичных реакций, приходящихся на одну первичную, достаточно велика). [c.15]

    В растворах гомогенно-каталитические реакции протекают обычно по механизму молекулярных реакций с образованием сложных, активных комплексов или промежуточных соединений с участием катализатора, который снижает энергию активации реакции. Это объясняется тем, что в сложном активном комплексе с участием катализатора уменьшается энергия связей и облегчается их разрыв. Особенно выгодным является образование циклических активных комплексов, так как чередование рвущихся и возникающих химических связей, а также перемещение электронов, образующих химическую связь, по циклическому активному комплексу (миграция связей в молекуле) способствует снижению энергии активации при разрыве химических связей. Кроме того, энтропия активации при образовании в растворе сложных активных комплексов может увеличиться за счет освобождения некоторого числа молекул растворителя, связанных с молекулами исходных веществ и с катализатором. [c.414]

    Учеными предпринимались неоднократные попытки экспериментально доказать справедливость механизма молекулярно-кинетических процессов в напряженном полимере, приводящих к разрушению. Определяли, например, энергию активации процесса разрушения при разных значениях действующего напряжения, а затем экстраполировали полученные значения к нулевому напряжению в соответствии с уравнением (13.3). Выражение в числителе показа- [c.203]

    С точки зрения механизма молекулярного взаимодействия, энергия активации необходима для возбуждения переходного состояния реагирующей системы. Как видно из рис. 1У-8, процесс синтеза Н1 проходит через промежуточное образование активного комплекса , в котором исходные связи (Н—Н и 1—1) уже расслаблены, [c.129]

    Полимеризацией изобутилена получают полимеры со степенью полимеризации от 2000 до 80 ООО. Низкомолекулярные полимеры (молекулярный вес ниже 50 ООО) — жидкости, высокомолекулярный полиизобутилен — каучукоподобный продукт. Полиизобутилен обладает высокими диэлектрическими свойствами, устойчив к действию влаги, кислот и щелочей. В промышленности получают его полимеризацией изобутилена по ионному механизму. Молекулярный вес полиизобутилена зависит от условий проведения полимеризации и применяемых катализаторов. [c.140]

    С позиций механизма молекулярного взаимодействия энергия активации необходима для возбуждения переходного состояния реагирующей системы. Как видно из рис. 1У-6, процесс синтеза Н1 проходит через промежуточное образование активного (активированного) комплекса , в котором исходные связи (Н—Н и 1—1) уже расслаблены, а конечные еще не вполне сформированы. Энергия активации рассматри ваемой реакции равна 163 кДж/моль. [c.107]

    Молекулярный механизм. Молекулярная теория резонансного поглощения аналогична молекулярной теории формы и ширины линии в спектре поглощения (см. рис. 153) и тесно связана с теорией формы и ширины линии в эмиссионном спектре. При смещениях электронов три процесса, приводящие к рассеянию энергии, имеют важное значение затухание вследствие излучения, соударения и эффект Допплера. При относительных смещениях атомов или ионов в молекуле второй из этих процессов имеет наибольшее значение. Поэтому мы будем рассматривать только его. [c.362]

    Двухслойная модель. В действительности при любой степени турбулентности потока в тонком пристенном слое сохраняются черты ламинарного течения, скорость равна нулю лишь непосредственно на стенке (условие прилипания). В этой зоне, называемой вязким подслоем, преобладает механизм молекулярной вязкости, а турбулентные пульсации скорости резко затухают по мере приближения к стенке. Толщина вязкого подслоя б, в котором сохраняются закономерности чисто ламинарного течения. [c.162]

    Извлекаемый компонент только в первый момент экстрагирования находится в контакте с движущейся жидкостью, а впоследствии теряет контакт с нею. Перенос вещества к границам пористого тела происходит с помощью механизма молекулярной диффузии в неподвижной жидкости, заполняющей пористый объем. По этой причине экстрагирование-менее интенсивный процесс по сравнению с растворением. [c.277]


    Присущая белкам способность к структурной самоорганизации представляет собой элементарное фундаментальное качество живой материи, обусловливающее специфические особенности биологических систем всех последующих ступеней иерархической лестницы живого Каков же механизм молекулярной структурной организации белка, этой аристотелевской энтелехии живой материи, и можно ли понять его на основе существующего уровня естественнонаучных знаний Рассмотрению этого вопроса посвящена большая часть настоящей книги [c.57]

    Химическая физика опирается на фундамент квантовой механики и изучает механизмы молекулярных столкновений, перераспределение энергии внутри молекул, а также связанные с внутримолекулярными физическими процессами кинетические химические эффекты. Основные понятия и представления химической физики стали формироваться в первой четверти XX в., когда было обнаружено, что при фотохимическом взаимодействии хлора и водорода на каждый поглощенный квант энергии света образуются не одна, а сотни тысяч молекул хлороводорода. Чтобы объяснить это явление, М. Боденштейн использовал понятие о радикалах — осколках молекул или несвязанных атомов, имеющих свободную валентность и обладающих реакционной способностью значительно большей, чем валентно насыщенные молекулы. [c.22]

    Для уточнения пенетрационной модели Кишиневским было предложено заменить коэффициент молекулярной диффузии О эффективным коэффициентом Ьэф, учитываюш,им совместное действие молекулярной и турбулентной диффузии [модель Кишиневского). Данквертс, сохранив механизм молекулярного переноса, скорректировал модель Хигби, приняв не одинаковое, а экспоненциально распределенное время пребывания элементов рабочей фазы на межфазной поверхности. При этом получено следующее выражение (модель Данквертса)  [c.445]

    Массообмен капли, взвешенной в турбулентном потоке, происходит за счет доставки вещества к поверхности капли турбулентными пульсациями и за счет механизма молекулярной диффузии. Как показано в разделе 16.2, выражение для массового потока вещества на поверхности капли зависит от соотношения между радиусом капли и внутренним масштабом турбулентности Хд = где — диаметр рабочего сечения абсорбера Ке — число Рейнольдса. Для [c.523]

    Внутри набухшего листа или элементарного волокна вследствие химического связывания происходит падение концентрации. Ее выравнивание с внешней щелочью протекает по механизму молекулярной диффузии, которая относится к числу медленно протекающих процессов. Здесь начинается вторая стадия процесса. При мерсеризации листов целлюлозы в мерсеризационных прессах этот процесс не завершается полностью даже в течение 1 ч. При мерсеризации в массе, когда внешний мерсеризационный раствор [c.42]

    Способность обратимо изменять степень окисления на одну либо на две единицы обусловливает возможность катализа этими соединениями окислительно-восстановительных превращений. Установлены два принципиально-различных механизма катализа — это ион-радикальный механизм, включающей образование и реакции свободных радикалов, и ион-молекулярный механизм без образования свободных радикалов окислительно-восстановительных реагентов. Используя нитроксилы в качестве катализатора, удалось впервые реализовать и однозначно доказать механизм молекулярного окисления субстратов одноэлектронным окислителем.  [c.89]

    В основе стационарной пленочной модели массоотдачи лежит предельное предположение о наличии около поверхности (стенки) неподвижного слоя (пленки) среды-носителя вне такой пленки поток среды считается настолько сильно турбулизованным, что концентрацию с растворенного компонента в поперечном к поверхности пленки направлении можно считать практически постоянной (рис. 5.2.3.1). Поперек неподвижной пленки, то есть в направлении х, компонент переносится только за счет механизма молекулярной диффузии. В этом случае дифференциальное уравнение [c.269]

    При реакции пропилена с трехбромистым фосфором при нагревании реагентов до 150° С получено 70% изомера I и 30% изомера И. Хотя механизм термического присоединения трехбромистого фосфора к олефинам не изучен, можно предположить наряду с гомолитическим реализацию других механизмов —молекулярного и ионного. [c.40]

    Подоб гоо распространение результатов кинетической теории диффузии в газах на жидкузо фазу пе вполне надежно, однако мы еще пе располагаем другим, более эффективным сродством для ренгеыия вопроса о механизме молекулярной диффузии в жидкостях. [c.66]

    Для реакции (32) i aкт. = 43,15 ккал моль и 1 дезакт. = 31,24 ккал моль. Сумма последних дает "акт. для реакции (31) равным 74,39 ккал моль, что несколько превышает величину, полученную Сакссом. Было предложено два механизма (молекулярный и радикальный), на основании которых были сделаны предшествующие выводы. [c.82]

    Влияние окиси азота на разложение этана являлось предметом многих исследований. Стэвли [81] нашел, что с увеличением концентрации окиси азота скорость разложения снижается до минимума, достигая величины 8% от неингибированной скорости. Изучая реакции, ингибированные окисью азота, Стэвли и Гиншельвуд установили, что средняя длина цепи значительно короче предполагавшейся на основе механизма свободных радикалов. Упомянутые авторы приходят к выводу, что в рассматриваемой реакции действуют оба механизма молекулярный и свободнорадикальный. Такой же вывод был сделан Стици и Шейном [85], которые нашли, что энергия активации полностью ингибированной реакции равна 77,3 ккал, в то время как у Стэвли последняя равна 74 ккал. Любое из этих значений превышает величину, принятую для неингибированной реакции — 69,8 ккал. Ингольд и другие [43] исследовали влияние окиси азота и пропилена на разложение этана. Пропилен действует аналогично окиси азота, хотя но является окисляющим агентом. Ингольд приходит к тому же выводу, что в рассматриваемой реакции действуют оба механизма. [c.83]

    Изменения катализатора при воздействии реакционной смеси и каталитической реакции приводят к дополнительному уменьшению свободной энергии и увеличению энтропии системы в целом, В то же время энтропия собственно катализатора (подсистемы) уменьшается, а свободная энергия возрастает. Это положение становится очевидным уже из того, что, в рассмотренной системе при исключении катализа должен пойти самопроизвольный процесс К Кт. Другими словами, катализатор в таких системах играет роль своеобразной энергетической ловушки, в которой накапливается также отрицательная энтропия . Здесь просматривается интересная аналогия с биологическими системами, неотъемлемая функция которых — порождение отрицательной энтропии и свободной энергии за счет протекающих в организме процессов переработки питательных веществ [79]. Можно сказать, что в каталитических системах существует механизм молекулярной селекции, обусловленной устойчивостью различных активных состояний. Цапомним, что устойчивость активного состояния (соединения) в каталитической реакции тем выше, чем больше оно удалено от равновесного и чем больше, следовательно, его запас свободной энергии и отрицательной энтропии [80]. [c.303]

    Принято идеальное перемешивание в сплошной фазе. Однако весьма вероятно, что из-за малых размеров частиц дисперсной фазы ( 10 - -10 см) последние будут переноситься сплопшой фазой, оставаясь в покое относительно несущей жидкости. Поэтому следует ожидать, что массонеренос к частицам будет определяться в основном механизмом молекулярной нестационарной диффузии. [c.147]

    Особенно широкое распространение при исследовании процессов молекулярной релаксации получила радиотермолюминесцеи-ция. Учитывая, что размораживание подвижности фрагментов, состоящих из различного числа атомных групп, приводит к резкому изменению температурной зависимости интенсивности свечения (появлению максимума), радиотермолюминесценцию можно рассматривать как один из методов релаксационной спектрометрии. При этом различные параметры максимума на температурной зависимости интенсивности радиотермолюминесценции (температура его появления, высота, ширина и ограничиваемая им площадь) позволяют получать информацию об особенностях механизма молекулярной подвижности в конкретных условиях. [c.253]

    Анализируя данные по термодинамическим параметрам реакций комплексообразования эфира 18-краун-б (табл. 4.8) и р-ЦД (см. ниже табл. 4.17) с аминокислотами в воде, можно сделать следующие сравнительные выводы о взаимодействии указанных макроциклов с АК в воде. Константы равновесия реакций комплексообразования 18-краун-б с АК меньше соответствующих констант для систем р-ЦД + АК, однако 18-краун-б имеет более сильную комплексообразующую способность к АК по сравнению с р-ЦД. Ассоциация 18-краун-б со всеми АК в воде происходит по единому механизму за счет образования трех водородных связей посредством КНз-группы АК и через три электростатических взаимодействия Г Г. .. О. р-ЦД селективно ассоциирует с изученными АК и образует комплексы только с ароматическими АК за счет специфических взаимодействий, а процесс комплексообразования в большей мере, чем в случае с 18-краун-б, управляется влиянием среды. Это подтверждается существованием зависимости энтальпии комплексообразования (Д(.// ) 18-краун-б и р-ЦД от энтальпии гидратации (Д ,у ,Л) аминокислот (рис. 4.14), из которой выпадают только значения для комплексов Ь-Шз-р-ЦД, Ь-01п-18Кб, Ь-Р11е-18К6, что свидетельствует об ином механизме молекулярного узнавания этих АК указанными макроциклами. Как видно из рис. 4.14, зависимость А,Н А,,у гН) для Р-ЦД сильнее выражена, чем для 18-краун-б, что говорит о большем влиянии растворителя на процесс ассоциации АК с р- [c.227]

    На стыке молекулярной биологии с физической и физико-органической химией возникла еще одна не менее важная задача — создать сравнительно простые каталитические системы, в которых использовали< ь бы принципы действия активных центров, работающих в ферментах. Подобного рода исследования обогащают физико-органическую химию познанием нетрадиционцых путей (механизмов), позволяющих ускорять или в общем случае регулировать скорости химических реакций. Изучение механизмов молекулярной биологии, в частности движущих сил ферментативного катализа, поможет найти пути создания избирательных химических катализаторов с управляемыми свойствами [7, 8]. В то же время анализ как общих закономерностей, так и различий, наблюдаемых в ферментативных и модельных системах, можно рассматривать как качественно новую ступень углубленного изучения самих ферментов. Иными словами, подобного рода исследования в области молекулярной химической бионики должны способствовать формированию новых взглядов на природу ферментативного катализа. [c.3]

    Ионный обмен с участием органических ионов имеет ряд особенностей. Адсорбция больших органических ионов на синтетических ионитах происходит не только за счет электростатического взаимодействия с ионогенными группами ионитов по обычному ионообменному механизму, но и за счет взаимодействия неполярной части органического иона с неполярной поверхностью ионита вблизи ионогепной группы по механизму молекулярной адсорбции. Энергия обмена органических ионов, определяющая константу обмена, является суммой электростатической энергии и энергии молекулярной адсорбции. [c.372]

    Образование В.с. и молекулярных комплексов в значит, степени определяет сольватацию ионов и электрич. проводимость рьров, поляризацию сегнетоэлектриков обеспечивает механизм молекулярного распознавания при самосборке биол. структур, напр, синтез РНК с использованием в кач-ве матрицы ДНК при трансляции, структурное соответствие молекул нуклеиновых к-т или их участков (см. Комплементарность). Роль В с. существенна во мн. процессах хим. технологии, в частности при адсорбции, экстракции, кислотно-основном катализе [c.404]

    Оценка величины Тс.в по формуле Хуббарта для Н2О при Т=280°С, Т(1= 1,56-10 сек и /о = 2-10 г см приводит к очень маленькому значению Тс.в=5-10" сек, которое не может быть связано с реальным процессом вращения. Таким образом, согласно оценкам Смита и Паулюса Тс в С га в Н2О при Т=Ти. Для обычных жидкостей Тс.в = тй (т. е. время релаксации диэлектрической постоянной определяется временем вращения молекулы). Этот факт автор рассматривают как еще одну аномалию Н2О. Несмотря на грубость выполненных оценок, их результаты четко показывают, что механизмы молекулярного взаимодействия в воде не похожи на механизмы молекулярного взаимодействия в других жидкостях. [c.148]

    Иногда процесс промывки в соответствии с характерными участками на кривой промывки делят на 3 периода (а—Ь, Ь—с, с—(1). Однако правильнее делить процесс на два периода в соответствии с преобладающим механизмом извлечения, примесей. Если вернуться к упрощенной схеме 2-6, б, то становится ясным, что как участок а—Ь, так и участок Ь—с на кривой промывки (рис. 2-7) относятся к первому периоду с преобладающим гидродинамическим удалением примесей — вытеснением фильтрата в поршневом режиме из всех проточных пор различного сечения. Резкое замедление удаления примесей во втором периоде (участок с— ) объясняется тем, что удаление примесей происходит в результате другого, з начительно менее эффективного механизма — молекулярной диффузии, или десорбции. [c.54]

    Ионообменные целлюлозы хорощо проницаемы даже для очень крупных молекул и активно их поглощают. Поглощение гумусовых веществ протекает по механизму молекулярной сорбции. Емкость ионита тем выще, чем ближе строение его матрицы к строению сорбируемого вещества. С ростом степени набухания увеличивается способность ионита поглощать более крупные молекулы. При фильтрации растворов через катионит в Н-форме может происходить осаждение гуминовых кислот в массе катионита вследствие подкисления ионами водорода, вытесняемых катионами минеральных солей. [c.251]

    Механизм молекулярного осаждения Si02 из раствора мономера Si (ОН) 4, очевидно, противоположен механизму растворения твердого кремнезема. Он включает в себя реакцию конденсации, катализируемую гидроксил-ионами и ускоряемую присутствием солей. Следовательно, процесс происходит главным образом в области pH>7 (поскольку он катализируется гидроксил-ионом), но, очевидно, не выше pH 11 (когда кремнезем растворяется с образованием силикат-иона). В горячем растворе осаждение происходит быстрее, а конденсация и дегидратация кремнезема протекают более полно. [c.118]

    Сделаем следующие предположения газ неподвижный, капля не движется относительно газа на межфазной поверхности жидкость — газ существует локальное термодинамическое равновесие давления в газовой и жидкой фазах равны и постоянны природный газ считается нейтральным. Это означает, что он не растворяется в жидкой фазе, в то время как возможен перенос воды и метанола через межфазную поверхность характерное время процесса тепломас-сопереноса в газовой фазе мало по сравнению с характерным временем в жидкой фазе. Это предположение позволяет сформулировать задачу в квази-стационарном приближении распределение концентраций компонентов и температуры в газе является стационарным и зависит только от расстояния г от центра капли, в то время как концентрации компонентов и температура в жидкой фазе изменяются со временем и однородны по объему капли природный газ рассматривается как один компонент (псевдогаз), свойства которого определяются по известным правилам усреднения для многокомпонентных смесей [9]. Мольная концентрация псевдогаза обозначается y Q, перенос массы компонентов в газе обусловлен механизмом молекулярной диффузии, характеризуемым бинарным коэффициентом диффузии D,-,,, перекрестными эффектами пренебрегаем. [c.539]

    Для количественного описания процесса растворения ксантоге-ната неприменимы классические уравнения, полученные из теории подобия и дающие удовлетворительные результаты для низко-молекулярных твердых веществ [3, с. 14]. Эти уравнения базируются на диффузионной модели, согласно которой у поверхности растворяемого твердого тела имеется неперемешиваемый диффузионный слой и через него растворяющееся вещество может транспортироваться только по механизму молекулярной диффузии. Однако коэффициент диффузии ксаитогената вследствие большой молекулярной массы на три десятичных порядка меньше коэффициента диффузии низкомолекулярных веществ. Поэтому скорость его переноса через диффузионный слой незначительна, и [c.107]

    Какой-либо дальнейшей детализации механизма ко-йфор-мационных перестроек в этой работе не содержится и лишь обсуждается вопрос о кооперативности процесса перестроек в смежных цепях, что, по мнению авторов [69], должно привести к увеличению размеров минимального участка цепи, способного к перестройке. Представления об одновременных согласованных поворотах вокруг ряда несоосных связей являются весьма важными для понимания механизма молекулярного движения. Из них следует, что конформации [c.16]


Смотреть страницы где упоминается термин Механизм молекулярной: [c.154]    [c.28]    [c.284]    [c.198]    [c.16]    [c.19]    [c.221]    [c.247]    [c.300]   
Экстрагирование Система твёрдое тело-жидкость (1974) -- [ c.32 , c.48 , c.49 ]




ПОИСК







© 2025 chem21.info Реклама на сайте