Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная динамика дипептидов в воде

    Сольватация исследование молекулярной динамики дипептидов в воде [c.31]

    МОЛЕКУЛЯРНАЯ ДИНАМИКА ДИПЕПТИДОВ В ВОДЕ [c.33]

    Характеристики молекул воды, находящихся вблизи растворенного вещества со смешанными функциональными группами (содержащего и полярные, и неполярные группы), рассмотрены и проиллюстрированы на примере результатов, полученных путем моделирования молекулярной динамики в разбавленных растворах дипептида аланина. Описано влияние растворителя на молекулярную динамику дипептида и влияние дипептида на молекулярную динамику растворителя. [c.50]


    При моделировании разбавленных водных растворов дипептида аланина Карплас методами молекулярной динамики оценил влияние растворенного вещества на динамические свойства воды и показал, что это влияние ограничивается первым сольватационным слоем (2). Структуры воды вблизи полярных и неполярных групп полимеров становятся различными при образовании таких же водородных связей, как в объемной воде. При этом в первом случае число соседних молекул снижается, а во втором их число равно нулю и вода приобретает повышенную подвижность. [c.9]

    Изучение сжимаемости, подобное проведенному в работах [10—14], дало дополнительный подход (кроме пяти вышеупомянутых) к исследованию свойств гидрофобных систем в воде. Хотя в настоящее время и нет адекватной теории гидрофобных взаимодействий, есть ее многообещающее начало [9]. Недавние расчеты методом молекулярной динамики, проведенные Росски и Карпласом [19] и Гейгером, Раманом и Стиллинджером [20] на дипептидах в воде явились существенным прогрессом в понимании распределения, ориентации и водородных связей молекул воды, находящихся в непосредственной близости к углеводородным остаткам, структура которых напоминает некоторыми чертами флуктуационную структуру, сходную с порядком в клатратах (см. также [21, 22]). Гейгер и сотр. считают, что, согласно динамическим данным, трансляционные и вращательные движения молекул воды, образующих сольватную оболочку, медленнее (по крайней мере на 20%), чем движения в объеме чистой воды [20]. Эти изменения не очень велики, но могут оказаться чрезвычайно важными. [c.87]

    Со столь упрощенным описанием геометрии белковой цепи соизмерима и степень приближенности учета внутримолекулярных взаимодействий. При энергетической оценке предполагалось, что белковая цепь состоит не из 20 аминокислотных остатков, а из трех Ala, Gly и Pro. Потенциалы вращения вокруг виртуальных связей С —С были получены путем усреднения энергии по всем конформациям дипептидов Ala—Ala, Ala—Gly, Ala—Pro, Gly—Gly, Gly—Ala и Pro—Ala. Принято, что каждый потенциал зависит только от природы второй аминокислоты. Для остатков Asp и Asn использован потенциал, найденный для Gly, а для остальных остатков, кроме Pro, — потенциал Ala. Выбор одинаковых потенциалов для Asp, Asn и Gly обоснован тем обстоятельством, что эти остатки часто встречаются в поворотах цепи. Таков же уровень обоснования в других случаях. Эффективный потенциал взаимодействия между двумя одинаковыми боковыми цепями Ala, Gly и Pro рассчитывался по функции типа Леннарда—Джонсона как сумма энергии взаимодействий всех атомов в одной сфере с атомами в другой. Потенциалы взаимодействий между разноименными боковыми цепями получены из феднегеометрического комбинационного правила. Свертывание модели определялось путем решения уравнений молекулярной динамики, а влияние окружающей среды учитывалось введением специальной энергетической составляющей гидрофобных взаимодействий. Последние оценивались по данным растворимости аминокислот в воде и этаноле. [c.288]



Вода в полимерах (1984) -- [ c.31 , c.49 ]




ПОИСК





Смотрите так же термины и статьи:

Динамика

Дипептид

Молекулярная динамика



© 2025 chem21.info Реклама на сайте