Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия связь с молекулярной динамикой

    Локальные свойства существенны, когда мы хотим выбрать полимер, наиболее подходящий для данного практического применения. Если мы хотим изготовлять резину, то нам необходимо хорошо понимать локальные движения в цепях каучука - как они зависят от температуры, какую роль играют стерические ограничения между соседними мономерами и т.п. Экспериментальные методы, применяемые для исследования локальных свойств полимерных цепей, в общем мало отличаются от методов, применяемых для малых молекул, практически это те же инфракрасная спектроскопия и спектроскопия комбинационного рассеяния. Аналогично применяемые (или планируемые к применению) теоретические методы связаны с теми, которые используются для обычных жидкостей, - это молекулярная динамика, методы Монте-Карло и т.д. [c.23]


    В противоположность прямым методам, часто используемым в структурном анализе, таким, как рентгеноструктурный и электронографический, при помощи метода спектроскопии комбинационного рассеяния изучают преимущественно динамику решетки. А так как правила отбора для оптических переходов в конечном счете зависят от симметрии молекул и кристаллов, то этот метод может оказаться весьма полезным при установлении структуры кристаллов. В общем случае точное установление пространственной группы и межатомных расстояний для исследуемого кристалла невозможно, однако данные спектроскопии КР позволяют исключить некоторые структуры, а также выбрать одну структуру из двух возможных. Все сказанное особенно справедливо при сочетании метода комбинационного рассеяния с рентгеноструктурным анализом, так как атом водорода имеет очень небольшое сечение рассеяния рентгеновских лучей. Во всех случаях комбинационное рассеяние является источником ценной информации о силах межмолекулярного и внутримолекулярного взаимодействий, атомных и молекулярных движениях, а также о свойствах, которые непосредственно связаны с такими характеристиками твердых веществ, как удельная теплоемкость, пластичность, термическое расширение и теплопроводность. [c.355]

    Определение энергии активации для ван-дер-ваальсовых жидкостей не представляет сложностей, так как зависимость 1п D = /(1/Г) линейна. Для водородосвязанных жидкостей эта зависимость нелинейна, что создает определенные трудности при определении энергии активации. В этом случае применяется [68] линейно-кусочная аппроксимация, предполагая, что в пределах выбранных участков предэкспонента и энергия активации остаются постоянными. Справедливость такого подхода была проверена на воде. В интервале температур от -40 до 225°С энергия активации самодиффузии Е , определенная таким образом, на рис. 8.16 сравнивается с энергией межмолекулярных связей Ei d по данным молекулярной динамики [100] и со средней энергией водородных связей в воде по данным ИК-спектроскопии [ 108]. [c.343]

    А. п. лежит в основе практически всех представлений совр. теоретич. химии о строении молекул, хим. связи, реакц. способности, динамике элементарного акта хим. р-ции, природе фотохим. процессов. В рамках А. п. сформированы осн. понятия и методы интерпретации экспери.м. данных в молекулярной спектроскопии, электронографии, рентгенографии и др. областях структурной химии. [c.35]


    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    В данной главе приведены сведения по технике измерения дифракции рентгеновских лучей и рассеяния нейтронов, а также обобщены типичные результаты применения этих методов для исследования структуры и динамики поведения воды и ионных растворов. Такие взаимодополняющие измерения дают прямую информацию на молекулярном уровне для проверки существующих теорий или развития и усовершенствования полуэмнирических моделей жидкостей. Имеются данные, указывающие на то, что структура воды оказывает значительное влияние на гидратацию ионов и структуру растворов. Однако все еще нет достаточно общих моделей, описывающих как структуру воды и водных растворов, так и соответствующие индивидуальные и групповые движения молекул. Тем не менее в настоящее время данные дифракции рентгеновских лучей и нейтронной спектроскопии вместе с данными, полученными другими методами, могут дать много необходимых (и, возможно, достаточных) ограничений, налагаемых на количественные модели. В периоды времени, малые по сравнению с временем релаксации, вода ведет себя как "горячее", или высоковозбужденное, "квазитвердое" тело с дефектами в водородных связях и квазитетраэдрическим ближним порядком. [c.298]


Библиография для Спектроскопия связь с молекулярной динамикой: [c.248]   
Введение в курс спектроскопии ЯМР (1984) -- [ c.411 , c.412 ]




ПОИСК





Смотрите так же термины и статьи:

Динамика

Молекулярная динамика

Спектроскопия молекулярная



© 2025 chem21.info Реклама на сайте