Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ковалентные кристаллы положение в периодической таблице

    Это сходство с металлами указывает, что валентные электроны в германии не связаны с атомами столь прочно, как можно было бы ожидать для настоящего ковалентного каркасного кристалла. Мыщьяк, сурьма и селен существуют в одних модификациях в виде молекулярных кристаллов, а в других модификациях - в виде металлических кристаллов, хотя атомы в их металлических структурах имеют относительно низкие координационные числа. Известно, что теллур кристаллизуется в металлическую структуру, но довольно вероятно, что он может также существовать в виде молекулярного кристалла. Положение астата в периодической таблице заставляет предположить наличие у него промежуточных свойств, однако этот элемент еще не исследован подробно. [c.607]


    Некоторые из соединений металлов с бором, углеродом И азотом имеют структуры, которые могут рассматриваться как плотнейшие упаковки атомов металла или как другие простые структуры с включением небольших неметаллических атомов в промежутках между атомами металла AIN со структурой вурцита может рассматриваться как алюминиевая плотная гексагональная упаковка с атомами азота а тетраэдрических положениях. В этом кристалле атом азота образует ковалентные связи с четырьмя соседними атомами, алюминия. S N, TiN, ZrN, VN, NbN, Ti , Zr , V , Nb , Ta имеют структуру Na l и состоят из атомов металла в плотной кубической упаковке с атомами азота или углерода в октаэдрических положениях. Так как атомы первого периода периодической таблицы не могут образовывать больше четырех ковалентных связей, то представляется вероятным, что октаэдрическая координация шести атомов металла вокруг каждого легкого атома включает резонанс ковалентных связей между шестью положениями. Структура Fe4N примерно такая же. Атомы железа образуют плотнейшую кубическую упаковку с атомами азота в центрах октаэдров, образованных шестью атомами железа (элементарная ячей- [c.405]

    Иллюстрацией такой крайне сложной структуры является AgP. Как уже было указано в I6.9, при достаточно низких температурах это вещество имеет тетраэдрическое строение, при котором каждый атом серебра окружен четырьмя атомами иода, а каждый атом иода — четырьмя атомами серебра. Для того чтобы все электроны были общими, кристалл должен был бы состоять из Ag и I + ++-ИОНОВ иными словами, три электрона иода должны были бы быть общими. Однако иод очень неохотно принимает участие в этом процессе, и мягкость кристалла указывает на то, что атомы не имеют четырех прочных тетраэдрических связей. Поэтому, пожалуй, не очень неожиданно, что при более высоких (комнатных) температурах структура становится неправильной. При комнатной температуре многие атомы серебра в положении равновесия оказываются ближе к трем из окружающих их атомов иода, чем к четвертому. Выше 14б°С процесс обобществления электронов становится значительно слабее, ионы иода перестраиваются в кубическую объемноцентри-рованную решетку, а ионы серебра, повидимому, свободно движутся, подобно )1ШДкости, в промежутках. Все это происходит несмотря на то, что плотность высокотемпературной формы оказывается большей. Вследствие свободной подвижности ионов серебра высокотемпературная форма легко проводит электрический ток. Вполне удовлетворительного объяснения этого совершенно исключительного поведения дать нельзя, но оно, несомненно, не типично ни для чисто ионного кристалла, ни для кристалла чисто ковалентного типа. Хотя, как было сказано выше, случай Agi является исключительным, следует отметить, что не особенно большое число других кристаллов было исследовано столь же тщательно. Хотя других случаев, в которых некоторые атомы или ионы могут меняться местами, имеется мало или совсем не имеется, в остальных отношениях некоторые кристаллы могут быть также очень сложны. В сложном кристалле такого типа обычно содержится, по меньшей мере, один переходный элемент или, во всяком случае, один элемент из центральной части периодической таблицы. Обычно это такие элементы, для которых следует ожидать тип связи, промежуточный между ковалентным и ионным, и часто, но далеко не всегда, некоторые из элементов не находятся в своем максимальном валентном состоянии. Здесь интересно отметить, что усложненные структуры появляются и в случае перехода от металлической к ковалентной связи (см. 18.2). [c.335]



Как квантовая механика объясняет химическую связь (1973) -- [ c.245 ]




ПОИСК





Смотрите так же термины и статьи:

Ковалентность

Кристаллы ковалентные

Кристаллы положение в периодической

Кристаллы таблице



© 2024 chem21.info Реклама на сайте