Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодическая таблица периоды

Рис. 23-7. Сверхдлинная форма периодической таблицы, включающая восьмой период и область заполнения 53-орбиталей, которая соответствует гипотетическому ряду сверхпереходных металлов. Искусственные элементы указаны цветными символами. (Франций и астат встречаются в природе Рис. 23-7. Сверхдлинная <a href="/info/610615">форма периодической таблицы</a>, включающая восьмой период и <a href="/info/364991">область заполнения</a> 53-орбиталей, которая соответствует гипотетическому ряду сверхпереходных металлов. <a href="/info/822747">Искусственные элементы</a> указаны цветными символами. (Франций и астат встречаются в природе

    Редкоземельные элементы обладают очень сходными химическими свойствами, их валентность равна трем. По-видимому, все этн элементы необходимо было поместить в один столбец периодической таблицы. Однако ни один из столбцов не был таким длинным, чтобы вместить четырнадцать элементов. Далее, поскольку атомные веса всех редкоземельных элементов очень близки, их следовало поместить в один горизонтальный ряд, другими словами, в один период. В принципе их можно было поместить в шестой период, если предположить, что он длиннее, чем четвертый и пятый, которые в свою [c.104]

    В 1934 г. Ферми занялся бомбардировкой урана нейтронами в тем, чтобы узнать, нельзя ли получить атомы сг большей массой, чем уран (трансурановые элементы) В то время у урана был наибольший порядковый номер в периодической таблице, но возможно, что у элементов с большими порядковыми номерами слишком короткий период полураспада. [c.175]

    Теперь легче объяснить многие факты, изложенные в гл. 7. Структура периодической таблицы, с ее группами и периодами, может рассматриваться как проявление определенной последовательности энергетических уровней атомов (см. рис. 9-2). Элементы одной группы обладают сходными химическими свойствами потому, что они имеют одинаково запол- [c.399]

    Запишите формулу высшего оксида, формулу летучего водородного соединения (если оно существует) и укажите, пользуясь периодической таблицей, порядковый номер, период, группу, подгруппу и принадлежность к металлам пли неметаллам для следующих элементов а) магний б) кремний в) рений г) рутений  [c.35]

    Периодическое изменение свойств элементов представлено в периодической таблице современного вида. При расположении элементов в порядке возрастания атомных номеров и группировке на основании общих свойств они образуют семь горизонтальных рядов, называемых периодами. Каждый вертикальный столбец - группа элементов - содержит элементы с близкими свойствами. Группа лития (Ы), состоит, например, из шести элементов. Все эти элементы - крайне реакционноспособные металлы, образующие хлориды и оксиды общей формулы ЭС1 и Э2О соответственно. Так же, как хлорид натрия, все хлориды и оксиды этих элементов — ионные соединения. В противоположность этому группа гелия, расположенная по правому краю таблицы, состоит из крайне инертных элементов (к настоящему времени известны соединения только ксенона и криптона). Элементы группы гелия известны под названием благородные газы. [c.127]


    Такая периодическая таблица элементов была яснее и нагляднее, чем график, и, кроме того, Менделеев сумел избежать ошибки Ньюлендса, настаивавшего на равенстве периодов. [c.99]

    Наиболее устойчивые элементы - благородные газы-располагаются в последовательном ряду элементов с возрастающими порядковыми номерами с интервалами 2, 8, 8, 18, 18 и 32. Зная эти интервалы и наиболее важные сходства в свойствах элементов, можно построить периодическую таблицу, в которой сходные элементы располагаются друг под другом в вертикальных колонках - группах, а химические свойства элементов закономерно изменяются вдоль горизонтальных рядов-периодов. Полную, длиннопериодную форму периодической таблицы можно Представить в компактной, свернутой форме, наглядно иллюстрирующей возможность разбиения всех элементов на три категории типические (непереходные) элементы, для которых характерно значительное изменение свойств внутри периодов переходные металлы, более сходные между собой по свойствам, и внутренние переходные металлы с чрезвычайно близкими свойствами. [c.323]

    Как должна измениться реакционная способность металлов при переходе слева направо по данному ряду (периоду) периодической таблицы (При ответе на этот вопрос полезно сравнить активности натрия, магния и алюминия.) В какой части периодической таблицы расположены наиболее и наименее реакционноспособные металлы  [c.151]

    Например, в настоящее время установлено, что атомные массы возрастают в такой последовательности Ре, N1, Со, Си в четвертом периоде (ср. с 4-й строкой рис. 7-1), Яи, КЬ, Рс1, Ag в пятом периоде (ср. с 6-й строкой рис. 7-1) и 08, 1г, Р1, Аи в шестом периоде (ср. с 10-й строкой рис. 7-1). Однако N1 по своим свойствам больше напоминает Рё и Р1, чем Со. Кроме того, оказалось, что Те имеет большую атомную массу, чем I, но I несомненно сходен по химическим свойствам с С1 и Вг, а Те сходен с 8 и 8е. Наконец, после открытия благородных газов обнаружилось, что Аг имеет большую атомную массу, чем К, тогда как все остальные благородные газы имеют меньшие атомные массы, чем ближайшие к ним щелочные металлы. Совершенно очевидно, что во всех трех отмеченных случаях нельзя руководствоваться атомными массами при размещении элементов в периодической системе. Поэтому всем элементам периодической системы были приписаны порядковые номера от 1 до 92 (в наше время до 105). (Порядковые номера элементов приблизительно соответствуют возрастанию их атомных масс.) Если расположить элементы в периодической таблице в последовательности возрастания их порядковых номеров, химически сходные элементы образуют в ней вертикальные колонки (семейства или группы). [c.311]

    В связи с возможностью достижения новой области устойчивости представляет интерес дальнейшее расширение таблицы периодической системы элементов. На рис. 23-7 показан расширенный вариант периодической таблицы, включающий весь частично заполненный в настоящее время седьмой период и новый восьмой период. В последнем впервые встречаются д-орбитали, 5д. Последовательность заполнения орбиталей 5д, б/ и Id точно предсказать заранее невозможно. Однако проведенные в исследовательском центре Лос-Аламоса расчеты указывают, что после первых одного-двух новых электронов следующие электроны должны последовательно заполнять 5д-орбитали. Соответствующие элементы могут быть названы сверхпереходными металлами. [c.423]

    Ковалентные и ионные радиусы уменьшаются при движении слева направо по периодам Периодической таблицы. В первом коротком периоде (11 — Р) заряд ядра атома увеличивается от 3 до 9. Из-за увеличения заряда ядра К-электроны приближаются к ядру и радиус Д -оболочки уменьшается. Влияние этого обстоятельства на электроны -оболочки осложняется тем, что они экранированы от ядра Л -оболочкой и эффективно действующий ядерный заряд оказывается меньше действительного заряда ядра атома. Например, у лития внешний электрон притягивается ядром с зарядом - -3, экранированным двумя электронами. Вследствие чего значение действующего заряда оказывается ближе к +1, чем к +3. У бериллия -электроны экранированы двумя электронами, что приводит к уменьшению действующего на них заряда от +4 приблизительно до +2. Тем не менее при движении по периоду слева направо эффективные заряды ядер увеличиваются, что является причиной постепенного уменьшения атомных радиусов (см. рис. 15.4, б). Радиусы ионов с одинаковыми зарядами (например, M + ) изменяются аналогично. [c.361]

    В Пределах подгруппы элементов в периодической таблице энтропия простых веществ растет, однако не потому, что она является однозначной функцией массы. В последнем легко убедиться, рассмотрев ход изменения энтропии элементов третьего периода (рис. 2.6). Так, хотя в ряду Na — Аг атомная масса увеличивается, однако м8 претерпевает сложное изменение. Переход от мягкого натрия к твердому кремнию сопровождается уменьшением энтропии, затем опа несколько [c.180]


    Дальше наступил период совершенствования Периодической системы, в котором участвовали ученые многих стран. Характерно, что сотни вариантов системы, предложенные учеными позже, не носили самостоятельного характера, а были направлены на усовершенствование или модернизацию Периодической системы элементов Менделеева. Слова таблица и периодическая стали в них заклинаниями. Они как бы накладывали табу на другие способы наглядного представления естественного множества химических элементов как системы природы. Правда, у некоторых ученых возникал вопрос а почему только таблица Но это воспринималось как ересь, и отступников ставили на место. А вот в логической корректности словосочетания периодическая таблица никто не усомнился. Потрясение ученых, вызванное открытием Д. И. Менделеева, было настолько сильным, что им было не до логико-семантических тонкостей. Хотя в теоретической науке и это важно. Допустимо говорить периодическая сис- [c.60]

    Восьмая группа периодической системы включает в себя три тройки, или триады, металлов (см. периодическую таблицу). Эти элементы стоят в середине длинных периодов и являются связывающими звеньями между четным и нечетным рядом каждого периода  [c.160]

    Объясните структуру периодической таблицы элементов Д. И. Менделеева. Что такое период, группа элементов Как в них изменяются свойства элементов  [c.22]

    Атомы третьего и последующих периодов периодической таблицы образуют также связи с -электронами. При этом осуществляется квадратное или октаэдрическое расположение связей,, [c.93]

    Большую часть материала, изложенного в данной главе, намного легче понять и запомнить, если руководствоваться некоторыми закономерностями в физических и химических свойствах элементов, связанных с их положением в периодической таблице. Некоторые из наиболее важных закономерностей этого типа иллюстрируются рис. 21.3. Напомним, что электроотрицательность элементов возрастает при перемещении снизу вверх вдоль любой группы и слева направо в любом периоде. Таким образом, неметаллы характеризуются более высокими электроотрицательностями, чем металлы. При перемещении сверху вниз в каждой группе последовательно усиливаются 1 металлические свойства элементов. [c.284]

    Попробуем теперь использовать Периодическую таблицу для предсказания свойств неизвестных Вам элементов. Для этого воспользуемся тем, что в группе и периоде свойства меняются постепенно. Следовательно, свойства элемента должны представлять из себя нечто среднее между свойствами его ближайших соседей по группе и периоду. Рассчитаем, например, какой тогда будет относительная атомная масса атома Mg  [c.89]

    Найдите в периодической таблице элемент, принадлежащий к IV периоду и проявляющий одинаковые значения валентности Б своем водородном соединении и в высшем оксиде. [c.36]

    Два металла — А и В — принадлежат к одному и тому же периоду и к одной и той же группе. Элемент А образует только один хлорид, а элемент В — два хлорида, в одном из которых он проявляет более высокую валентность, чем это соответствует его положению в периодической таблице. Этот хлорид содержит 52,5% хлора. Назовите эти элементы. [c.161]

    При попытке связать электронную конфигурацию атома эле мента с положением в периоди ческой системе видно, что длинная форма периодической таблицы может быть разделена на четыре главные секции, как показано на рис. 3-8. Секция, обозначенная 5, содержит по два элемента каждого периода, секция р содержит по шесть, 1 — по десять, / — по 14 элементов. Это приводит к мысли о связи периодической системы с 5-, р-, д.- и /-состояниями, так как в этих состояниях может находиться соответственно 2, 6, 10 и 14 электронов. [c.98]

    Разработанный для молекулы водорода механизм образования химической связи позднее был распространен и на другие молекулы. Рассмотрим образование химической связи в двухатомных молекулах элементов первого и второго периодов периодической таблицы [c.43]

    Изобразим строение, электронных оболочек оставшихся пяти атомов второго периода периодической таблицы Менделеева [c.51]

    Если ограничиться вторым периодом периодической таблицы, то Ь может быть только азотом, а —углеродом или азотом, с — углеродом, кислородом или азотом. Следовательно, существует шесть типов таких соединений. К ним относятся приведенные [c.235]

    Во всех остальных группах периодической таблицы наблюдаются аналогичные отклонения в свойствах элементов главных и побочных подгрупп. Это объясняется тем, что в результате разделения периода на два ряда и расположения одного ряда под другим, начиная с четвертого, элементы, находящиеся далеко друг от друга по периоду, попадают в одну группу (главная и побочная подгруппы). [c.24]

    Изменение формы высших кислородных кислот неметаллов одной и той же группы объясняется тем, что с возрастанием порядкового номера неметалла увеличивается радиус его атома, а с увеличением радиуса атом может разместить вокруг себя большее число атомов кислорода. Формулы высших кислородных кислот неметаллов приведены в таблице 1. Они размещены в ней так же, как соответствующие элементы в периодической таблице. В кислотах неметаллов II периода, как видно из таблицы 1, к атому неметалла присоединено 3, у неметаллов III и IV периода — 4, а у неметаллов V периода — 6 атомов кислорода. [c.30]

    Почему в IV и V периодах, в отличие от III периода, между сильным основанием (щелочью) и амфотерной гидроокисью в таблице отсутствует слабое основание (Указание сравните таблицу 1 с периодической таблицей.) [c.34]

    В приближении водородоподобных электронов, т. е. при замене отталкивания экранированием, можно пользоваться описанными выше квантовыми числами — п, I, т и 5. Рассмотрим порядок заполнения квантовых состояний атомов, находящихся в начале периодической таблицы элементов. Это заполнение происходит так, чтобы соблюдалось требование минимума энергии. Поэтому очевидно, что электрон атома водорода (2=1) занимает состояние 15. У Не (2=2) в то же состояние можно поместить еще один электрон без нарушения принципа Паули из-за насыщенности (антипараллельности) их спинов, т.е. Не (15) . Однако у (2=3) третий электрон уже вынужден из-за принципа Паули занимать другое состояние, а именно Ы(1з)2(25). Таким образом, в первом периоде, соответствующем п = 1, помещается лишь два элемента, а литий начинает второй период. Этот элемент, как и водород, является одновалентным, следующий элемент (2=4) — бериллий — имеет на уровне 25 два электрона, т.е. Ве(15)2(25)2. [c.314]

    Кислород (2=8) 0(ls)2(2s)2(2p) имеет валентность, равную двум, фтор (2=9) F(ls)2(2s)2(2p)s имеет валентность, равную единице, и неон (2=10) Ne(ls)2 (2s)2(2p) имеет нулевую валентность. Таким образом, неон завершает второй период периодической таблицы, в котором оказывается восемь элементов, что соответствует упомянутому выше правилу Nn — 2n , где Л/ — число элементов в периоде при первом квантовом числе, равном п. Выведем это правило в общем виде. При данном п величина квантового числа I меняется от О до п—1, а каждому значению I отвечает 2/+1 чисел т. От- [c.315]

    В табл. 17.1 представлены гидриды элементов второго и третьего периодов Периодической таблицы. [c.378]

    Современные формы периодической таблицы. Периоды и группы. Типические (непереходные) элементы, переходные металлы и внутренние переходные. металлы (лантаноиды и актиноиды). Семейства элементов семи.металлы, щелочные. металлы, щсло июзсмглькыс . сталли и галогены. [c.302]

    Типические элементы образуют оксиды, формулы которых можно предсказать на основании положения элементов в периодической таблице например, элементы третьего периода образуют следующие оксиды НагО, МяО, А12О3, ЗЮз, Р2О5 63 и С12О7. Оксиды элементов, находящихся в левой части таблицы, являются сильными основаниями. Для них характерно наличие больщого отрицательного заряда на атомах кислорода, и по типу связи они принадлежат к ионным соединениям. Температуры плавления этих ионных оксидов, как правило, достигают 2000°С, но многие из них разлагаются уже при более низких температурах. Они реагируют с водой с образованием основных растворов [c.321]

    В каждом периоде периодической таблицы наблюдается общая тенденция к возрастанию энергии ионизации с увеличением порядкового номера элемента. Сродство к электрону оказывается наибольшим у кислорода и галогенов. Атомы с устойчивыми орбитальными конфигурациями.(s , s p , s p ) имеют очень небольшое (часто отрицательное) сродство к электрону. Расстояние между ядрами двух связанных атомов называется длиной связи. Атомный радиус водорода Н равен половине длины связи в молекуле Hj- В каждом периоде периодической таблицы наблюдается в общем закономерное уменьшение атомного радиуса с ростом порядкового номера элемента. Электроотрицательность представляет собой меру притяжения атомом электронов, участвующих в образовании связи с другим атомом. При соединении атомов с си.пьно отличающейся электроотрицательностью происходит перенос электронов и возникает ионная связь атомы с приблизительно одинаковой электроотрицательностью обобществляют электроны, участвующие s сбразовашг. ковалентной связи. Между атомами типа Н и F с умеренной разностью электроотрицательностей образуется связь с частично ионным характером. [c.408]

    VI групп, примыкающие к диагонали бор — астат,— типичные полупроводники (т. е. их электрическая проводимость с повышением температуры увеличивается, а не уменьшается). Характерная черта этих элементов — образование амфотерных гидроксидов (с. 151). Наиболее многочисленны d-металлы. В периодической таблице химических элементов Д. И. Менделеева они расположены между S- и р-элементами и получили название переходных металлов. У атомов d-элементов происходит достройка d-орбиталей. Каждое семейство состоит из десяти d-элементов. Известны четыре d-семейства 3d, 4d, 5d, и 6d. Кроме скандия и цинка, все переходные металлы могут иметь несколько степеней окисления. Максимально возможная степень окисления d-металлов +8 (у осмия, например, OsOj). С ростом порядкового номера максимальная степень окисления возрастает от III группы до первого элемента VIII группы, а затем убывает. Эти элементы — типичные металлы. Химия изоэлектронных соединений d-элементов весьма похожа. Элементы разных периодов с аналогичной электронной структурой d-слоев образуют побочные подгруппы периодической системы (например, медь — серебро — золото, цинк — кадмий — ртуть и т. п.). Самая характерная особенность d-элементов — исключительная способность к комплексообра-зованию. Этим они резко отличаются от непереходных элементов. Химию комплексных соединений часто называют химией переходных металлов. [c.141]

    Обратившись к периодической таблице Кэмбелла, можно увидеть, что в периодах системы по мере увеличения порядкового номера атомный радиус уменьшается. Постепенно прибавляющиеся электроны попадают на орбитали с почти одинаковой энергией. Поэтому увеличивающийся заряд ядра притягивает электронное облако в целом с большей силой. Уменьшение радиуса проявляется сильнее всего в случае, когда на валентную оболочку добавляется вто рой 5-электрон относительно меньше снижается радиус от прп [c.114]

    Наиболее иоздиее по времени указание Менделеева по проблеме РЗЭ мы находим в примечании к периодической таблице в восьмом (последнем прижизненном) издании Основ химии , тщательно отредактированном самим автором. Менделеев дает следующую итоговую оценку проблемы РЗЭ Между Ge=140 и Та=183 недостает целого большого периода, ио ряд редких элементов (изучение их не полно) например, Рг=141, Nd=144, Sm=150, Eu = 152, Gd = 160, Но=165 Ег=166, Tu=I71 и Yb=173 представляет, по современным сведениям вес атома, как раз восполняющий этот промежуток, потому в указан ном месте периодическая система элементов представляет собой сво го рода разрыв, требующий новых изысканий [18, с. 367]. [c.90]

    При сравнении нуклеофилов, атакующие атомы которых находятся в одном периоде периодической таблицы, нуклео-фильность приблизительно совпадает с порядком основности, хотя основность контролируется термодинамически, а нуклео-фильность — кинетически. Поэтому примерный порядок нуклеофильности следующий ЫН2 >НО->ОН->Н2ЫН>АгО > >NHз>пиpидин>F->H20> 104- есть и другой ряд КзС > >Н2Ы >К0 >р- (см. т. 1, табл. 8.1). Корреляции такого типа лучше всего работают при сравнении нуклеофилов сходной структуры, как, например, в случае серии замещенных фенолятов [259]. [c.76]

    В современной периодической таблице Д. И. Менделеева водород расположен в УПА группе под фтором, порядковый номер которого (9) отличается от порядкового номера водорода (1) на 8 его соседом по периоду является элемент УП1А группы Не с порядковым номером (2). Такое расположение отвечает современному физическому смыслу периодичности. Вместе с тем говорить [c.411]

    Появляющийся при переходе от фтора к неону Ne (2=10) десятый электрон завершает заполнение энергетических состояний, отвечающих главному квантовому числу п =.... Эта особенность находит о(гражение в периодической таблице, в которой неоном заканчивается. .. период. [c.34]

    Первым потенциалом ионизации называется энергия, необходимая для отрыва от изолированного атома в газообразном состоянии электрона, слабее других связанного с ядром. Второй потенциал ионизации — это энергия, необходимая для удаления второго электрона, и т. д. Энергия ионизации в периодической таблице возрастает слева направо для элементов одного периода, поскольку увеличивается заряд ядра (табл. 4). В столбце табл. 5 она уменьшается сверху вниз из-за увеличения расстояния электрона от ядра. Видно также, что энергия удаления электрона возрастает с числом отры- [c.39]

    Однако в те времена многих клавишей не хватало. Было известно 63 элемента из 92 естественно существующих. Многие клавиши издавали фальшивые звуки . Так, Д. И. Менделееву пришлось изменить атомные массы урана и тория, которые тогда принимали равными 116 и 120 (вместо 232 и 240) и атомную массу циркония, принимавшуюся в то время равной 138 (вместо 91). Д. И. Менделеев сумел увидеть (вернее, предвидеть) основной закон, согласно которому многие свойства элементов (валентность, атомные объемы, коэффициенты расширения и др.) изменяются периодически с возрастанием атомной массы элементов. Открытие периодического закона затруднялось из-за его сложности. Размеры периодов не одинаковы. Если в первом периоде (Н, Не) содержится всего два элемента, то во втором (Е1—Ые) — восемь, в третьем (Ма—Аг) — снова восемь, в четвертом (К—Кг)—восемнадцать, в пятом (КЬ—Хе)—тоже восемнадцать, в шестом (Сз—Кп)—тридцать два и, наконец, седьмой период оказывается недостроенным. Отметим, что числа элементов в периодах (2, 8, 8, 18, 18, 32) подчиняются общему закону 2п . При п = это выражение дает 2 при л = 2—8, при я=3—18 и при =4— 32. Кроме того, в середине периодической таблицы элементов находится 14 редкоземельных элементов, многие свойства которых (например, валентность) практически не изменяются, несмотря на увеличение атомной массы Трудность открытия периодического закона заключа лась и в том, что истинной независимой переменной, оп ределяющей свойства элементов, должна быть не масса а число электронов в атоме, т.е. заряд ядра. Д. И. Мен делеев, естественно, принял массу за такую переменную так как в механике она в значительной степени опреде ляет движение частиц. Атом был электрифицирован много позднее. Если бы были известны изотопы (атомы с одинаковым зарядом ядра и разными массами, например, водород и тяжелый водород), то, располагая их в ряд по величине массы, вряд ли можно было бы открыть периодический закон. Это удалось потому, что между массовым числом и зарядом ядра имеется определенная связь. Так, в начале таблицы элементов массовое число приблизительно в два раза больше заряда ядра. Атомная масса элемента определяется также его изотопным составом. При расположении элементов по их массовым числам Д. И. Менделееву при составлении таблицы при- [c.312]

    При движении слева направо по второму и третьему периодам Периодической таблицы наблюдается постепенное изменение свойств от щелочных металлов к галогенам. Четвертый период начи-Пс рпам герим нается также со щелочного (калий) и щелочнотзе-1(1.реходг(г.1х мельного (кальций) металлов. Следующие десять [c.507]


Смотреть страницы где упоминается термин Периодическая таблица периоды: [c.46]    [c.408]    [c.454]    [c.298]    [c.337]    [c.362]   
Общая химия (1979) -- [ c.90 ]

Общая химия (1964) -- [ c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Периодическая таблица элементов вариант с длинными периодами

Периодическая таблица элементов вариант с короткими периодами

Седьмой период периодической таблицы

ТРЕТИЙ ПЕРИОД ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ

Шестой период периодической таблицы

Электронные оболочки и периоды периодической таблицы

Элементы 5-го и 6-го периодов А-подгрупп периодической таблицы

Элементы Б-подгрупп периодической таблицы элеменЭлементы 4-го периода А-подгрупп периодической таблицы



© 2024 chem21.info Реклама на сайте