Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия использование пламенных источников

    Автомобили с дизельными двигателями становятся все более популярными, что повышает вероятность появления еще одного источника загрязнения. Конгресс США поручил Управлению по охране окружающей среды изучить особенности выхлопных газов дизелей и их воздействие на здоровье человека ( Закон о чистоте воздуха , август 1977 г.). Результаты этого исследования легли в основу требований к выхлопным газам дизелей, обязательных для всех моделей автомобилей, выпускаемых с 1982 г. Соответственно исследователи интенсифицировали усилия, направленные на разработку методов, позволяющих охарактеризовать выхлопные газы дизелей [10—14]. Многокомпо-нентность образцов и необходимость их возможно более полной характеристики явились причиной использования таких чрезвычайно сложных аналитических систем, как газо-жидкостная хроматография — масс-спектрометрия (ГЖХ—-МС), газо-жидкостная хроматография с пламенно-ионизационным детектированием (ГЖХ — ПИД), высокоэффективная жидкостная хроматография (ВЭЖХ), газо-жидкостная хроматография — фурье-спектроскопия в инфракрасной области (ГЖХ — ИК—ФС). Для фракций, обладавших мутагенными свойствами, применялись также биологические методы анализа. Ряд компонентов удалось идентифицировать только благодаря применению взаимно дополняющих методов анализа, например ГЖХ —МС, ГЖХ —ПИД и ГЖХ —ИК —ФС. Методом ГЖХ —МС можно легко определить молекулярную массу компонента и получить данные о его структуре, но этот метод менее информативен при идентификации функциональных групп напротив, такая информация легко может быть получена методом ГЖХ — ИК — ФС. В то же время последний метод не позволяет различать гомологичные соединения [15]. Этот пример наглядно демонстрирует необходимость применения в ряде случаев наиболее совершенных и информативных инструментальных методов анализа, как бы дороги они ни были. Стоимость работ должна соответствовать важности объекта изучения. В частности, если объект связан с контролем загрязнения окружающей среды, которое может иметь очень серьезные экологические последствия, то при- [c.23]


    В работах [360, 361] описаны аппаратура и условия для прямого определения содержания серы в нефтях методом пламенной атомно-абсорбционной спектроскопии. Использован вакуумный четырехканальный полихроматор Е 796 фирмы Хильгер с флюоритовой призмой, настроенной на линии 5 180,7 нм, Р 178,3 нм, С 165,7 нм и Ре 171,3 нм. Остаточное давление 20— 27 кПа. Источником света служит безэлектродная разрядная лампа, питаемая от микроволнового генератора с частотой 2450 МГц. Эффективная мощность, подаваемая на лампу, 10 Вт. С повышением мощности чувствительность ухудшается из-за уширения резонансной линии и самопоглощения. [c.250]

    Наиболее простым и давно применяемым источником возбуждения эмиссии является пламя, его использовали еще в ручном спектроскопе при проведении качественного анализа. В настоящее время пламя применяют для точных количественных определений содержания щелочных и щелочноземельных металлов в растворе в методе фотометрии пламени. Поскольку температура в зонах пламени неодинакова, возбуждающая способность этих зон также различна. Количественная оценка интенсивности излучения возможна только при работе с очень равномерным пламенем, при исключительно равномерном распределении анализируемого раствора в пламени и использовании для возбуждения одной и той же зоны пламени. [c.370]

    Метод оптической спектроскопии обладает сравнительно высокой чувствительностью, что дает возможность определять содержание рения до 10 "о. Спектр рения очень богат линиями возможно его обнаружение как с использованием дугового, так и искрового источников [124. Для количественного определения используют линии 4889,15 5275,57 3460,46 и 3464,722 А [42, 44, 125]. Однако в присутствии больших количеств молибдена интенсивные линии рения перекрываются линиями молибдена, вследствие чего чувствительность опреде.чеиия рения в молибденитах не превышает 10" %. Весьма успешно ирименяют метод предварительного отделения рения возгонкой семиокиси в пламени угольной дуги переменного тока. Для стабилизации температуры дуги предлагают применят углекислый литий. Для анализа используют линии 3460,47 3451,81 3399,30  [c.637]

    Реакционная зона в апетилено-воздушном и водородно-воздушном пламенах имеет весьма незначительную толщину — порядка десятой доли миллиметра. В ней протекают химические реакции, служащие источником энергии, за счет которой и происходит нагревание газов в факеле пламени. Эти процессы неравновесны и могут быть рассчитаны только методами химической кинетики. Для расчета же химического состава пламени и его температуры за пределами реакционной зоны можно привлечь методы классической химической термодинамики, а также экспериментальные методы определения температуры, основанные на использовании законов теплового излучения, с теми оговорками, которые были упомянуты в разд. 1.6 (например, метод обращения и т. п.). Для выполнения термодинамических расчетов необходимо знать состав горючей смеси. Это возможно, если учитывать только поступление газов из системы питания. Однако пламена, используемые в атомно-абсорбционной спектроскопии, горят непосредственно в атмосфере (пламена открытого типа), благодаря чему происходит дополнительное поступление в зону [c.54]


    При выборе методов анализа вод различного состава необходимо принимать во внимание приведенные выше данные об элементном составе природных, питьевых и сточных вод, а также возможности инструментальных аналитических методов (способ введения пробы, пределы обнаружения, погрешность определения). Сравнительная характеристика наиболее часто применяемых современных методов определения элементного состава по их пределам обпаружения представлена на рис. 1.3. Видно, что для определения макроэлементов (Са, Mg, К, Ыа, С1, Ее) с успехом могут быть применены прямая атомно-абсорбционная спектрометрия в пламенном варианте (ПААС), атомно-эмиссионная спектроскопия (АЭС) с различными источниками возбуждения спектров, электрохимический метод (ионо-селективные электроды, кондуктометрия). При определении микроэлементов для большинства методов возможности прямого инструментального анализа на уровне 1 мкг/л ограничены недостаточной чувствительностью. Прямое определение микроэлементов в природных водах возможно при использовании массснектрометрии с индуктивно связанной плазмой (ИСП-МС) [c.10]


Смотреть страницы где упоминается термин Спектроскопия использование пламенных источников: [c.59]    [c.11]   
Физическая химия для биологов (1976) -- [ c.529 , c.530 ]




ПОИСК







© 2025 chem21.info Реклама на сайте