Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

УАС-лазер искровой источник

    К особенностям спектрального анализа сплавов можно отнести вопросы, связанные с эталонированием, влиянием формы, размеров образцов, структуры сплава на результаты анализа, взаимным влиянием элементов, а также условиями достижения стационарного равновесия в дуговом и особенно искровом разрядах, т. е. механизмом перехода пробы в излучающее облако. При анализе сплавов применяют визуальные, фотографические и фотоэлектрические методы. Источниками возбуждения служат искра и дуга переменного тока, для локального анализа можно применять лазер [50]. [c.117]


    Можно анализировать так называемое первичное излучение, т. е. излучение атомов исследуемой пробы в факеле, образованном лазерным лучом. Но спектры в этом случае не самого лучшего качества. Поэтому чаще приходится лазер использовать только для испарения вещества пробы, а возбуждение атомов осуществлять в другом источнике света, например в искре. В этом случае режим работы лазера определяет скорость испарения материала пробы и время пребывания его атомов в зоне возбуждения, а режим работы искрового разряда — концентрацию возбужденных атомов. [c.101]

    Принцип работы такого прибора легко понять из рис. 2.2, на котором схематически изображен аналогичный прибор. Основными его частями являются лазер с модулятором добротности, микроскоп для юстировки образца и фокусировки излучения на его поверхности, а также система электродов для вспомогательного поперечного искрового возбуждения. Источники питания лазера и искрового разрядника не показаны. Приборы такого типа первоначально были разработаны для эмиссионной спектроскопии, в которой лазерное излучение служило источником тепла для испарения и возбуждения паров исследуемого образца при проведении локального анализа и микроанализа. В данном случае последний тип анализа сводится к локальному анализу, поскольку микропробу можно проанализировать только тогда, когда она либо уже сконцентрирована, либо ее можно сконцентрировать локально. [c.63]

    Поскольку энергия поперечного искрового разряда обычно выше выходной энергии лазера, то от вспомогательных электродов может образоваться больше паров, чем от образца. Известно также, что если в электроде из графита имеются примеси, то они не распределены по всему материалу равномерно, а часто сосредоточены в небольших участках. Поэтому при анализе спектров иногда трудно определить, что является источником обнаруженных элементов, в частности при анализе с использованием одной лазерной вспышки. [c.98]

    Первые эксперименты по разделению изотопов методом двухфотонной диссоциации были проведены Р.В. Амбарцумяном, В.С. Летоховым и др. [15]. В опытах был применен импульсный лазер на СО2, возбуждающий колебательные состояния молекул №5Нз. Затем осуществлялась фотодиссоциация этих молекул ультрафиолетовым излучением искрового источника света, синхронизованного с излучением лазера. Участки спектра, которые могли бы вызвать диссоциацию молекул [c.179]

    Ионизация при лазерной десорбции в присутствии матрицы (MALDI) Ионизация при десорбции ИК-лазером Термическая ионизация Искровой источник [c.15]


    В качестве источников возбуждения спектров применяют дугу постоянного и переменного тока, низковольтный, высоковольтный, конденсированный и высокочастотный искровые разряды [222]. Описан способ возбуждения спектров анализируемых образцов в сильнотоковом (—60 а) стабилизированном стенками импульсном дуговом разряде в атмосфере аргона [1075]. В этих условиях предел обнаружения хрома (4 ч- 10)-10" г. Стандартное отклонение 15%. Используют лазерные источники возбуждения спектров 1 183, 283, 1108, 1118]. Так, рубиновый лазер в комбинации с искровым источником возбуждения спектра применяют для определения следов Сг, Со, Ре, Мп, Мо, 8п и в гомогенных синтетических порошках фторида бария, окислов алюминия, иттербия и вольфрама [1118]. В последние годы стали применять плазматроны [543]. Пределы обнаружения хрома при разных способах возбуждения в пробе, смешанной с угольным порошком (1 1), равны (в %)  [c.73]

    Светомаркировочные устройства для записи меток времени вне поля кадра могут быть классифицированы по двум основным признакам по типу применяемого в них источника света и способу перерыва экспонирования его точечного изображения. В светомаркировочных устройствах находят применение лампы накаливания, искровые источники света, ксе-ноновые лампы, цифровые индикаторы тлеющего разряда, электронно-лучевые трубки, неоновые и аргоновые лампы, светодиоды, светодиодные цифровые элементы и лазеры. [c.35]

    Значительный раздел масс-спекгрометрии составляет элементный анализ твердых веществ. Прежде чем осушествить ионизацию, необходимо перевести эти вещества в атомное состояние. Для этого требуются достаточно высокие затраты энергии, и те источники, которые используют для этой цели, обеспечивают одновременно атомизацию и ионизацию твердых веществ. Среди наиболее распространенных источников ионизации можно выделить искровой электронный разряд, излучение лазера и поток ускоренных первичных ионов. Им соответствуют три вида масс-спектрометрического анализа твердых тел искровая, лазерная и ион-ионная, или масс-спектрометрия вторичных ионов. Наибольшее число определений проводится методом искровой масс-спектрометрии. [c.373]

    Труднее всего обнаружить низкие концентрации при анализе так называемых газообразующих примесей водорода, углерода, азота и кислорода. Мешающими факторами здесь являются фон остаточных газов в источнике ионов и загрязнения поверхности образцов. Использование специальных приемов анализа (прогрев источника ионов, откачка высокопроизводительными вакуумными насосами и т. д.) позволяют снизить предел обнаружения этих элементов с помощью искрового зонда до (мол.), что иримерно соответствует возможностям других методов определения газообразующих примесей. Эти процедуры достаточно сложны, и их применение оправдано в основном полнотой анализа, так как одновременно с газообразующими примесями определяются и другие элементы. Но существуют и специальные масс-спектрометрические методы для анализа газообразующих примесей с помощью электронного либо лазерного зонда. В последнем случае применяют лазер, работающий в режиме свободной генерации. Он служит для испарения вещества (атомизации), а ионизацию проводят пучком электронов, как при анализе паров. [c.215]


Смотреть страницы где упоминается термин УАС-лазер искровой источник: [c.75]    [c.222]    [c.10]    [c.94]    [c.94]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Лазер

УАС-лазер лазеры



© 2025 chem21.info Реклама на сайте