Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Триметилпентан реакция с хлористым алюминием

    При достаточно мягких условиях процесса действие хлористого алюминия на нормальный или мзо-бутаны можно ограничить изоморизацией с достаточно хорошим выходом (см. П-20). При воздействии хлористого алюминия на более высокие углеводороды происходит перераспределение, ведупцее к получению продуктов, кипящих либо выше, либо ниже исходных. Как полагают, эта реакция по аналогии с деструктивным алкилированием [614] включает в себя превращение нормальных парафиновых углеводородов в их изомеры. Вслед за этим последние разлагаются на изобутан и олефин. Часть этого олефина будет алкилировать предшествующий изопарафин, а часть — соединяться с катализатором, где и подвергнется комбинированной полимеризации. Для н-йен-тана [615], н-гексана и м-гептана [616] обнаружены продукты, наличие которых объясняется именно такой последовательностью реакции. Изооктан, 2,2,4-триметилпентан, также дает изобутан и более высококипящие предельные углеводороды. [c.137]


    Работы ГИВД [42] указывают также на новооткрытый тип каталитических реакций между углеводородами, при которых парафиновый углеводород разлагается под влиянием катализатора на олефин и предельный углеводород. Выделяющийся олефин в момент своего образования, встречая другой углеводород, например бензол, будет его алкилировать с образованием алкилбензолов. Так, например, гексан и бензол в присутствии катализатора дают этилбензол и бутан. Этот вид реакции назван авторами деструктивным алкилированием. Эта реакция была открыта при изучении взаимодействия изооктана и бензола в присутствии хлористого алюминия, но она имеет место и при взаимодействии других парафинов и замещенных бензола. Авторы пытались осуществить реакцию между изооктаном (2,2, 4-триметилпентаном) и бензолом также и в присутствии хлористого циркония, фтористого бора и хлористого магния. В последних двух случаях взаимодействия не наблюдалось. По мнению авторов, в присутствии алкилирующих катализаторов изооктан разлагается полностью на изобутан и изобутилен, который, присоединяясь к бензолу, дает третичный бутилбензол [c.428]

    Этот цепной механизм легко объясняет значительное различие продуктов, получаемых алкилированием изобутана 1-бутеном и 2-бутеном при применении хлористого алюминия в качестве катализатора, хотя нри сернокислотном и фтористоводородном алкилировании оба эти олефина образуют практически одинаковые продукты. Например, октановые числа бензиновых фракций с концом кипения 125°, получаемых алкилированием пзобутана 1-бутеном И 2-бутеном при 30° в присутствии хлористого алюминия и хлористого водорода, составляют соответственно 74,5 и 83,5 в обоих случаях алкилат содержит только 21—23% октанов [28в]. Если применять модифицированный катализатор на основе хлористого алюминия, а именно монометанолат хлористого алюминия, побочные реакции подавляются, вследствие чего при алкилировании 1-бутеном ири 55° получают жидкий продукт, содержащий 70% октанов октановое число бензиновой фракции с концом кипения 125° в этом случае равно 76 [28в]. Алкилирование 2-бутеном при 28° в присутствии монометано-лата хлористого алюминия дает жидкий продукт, содержащий 69% октанов бензиновая фракция с концом кипения 125° имеет октановое число 94. Основной причиной различия октановых чисел является изомерный состав октановых фракций бензин, полученный алкилированием 1-бутеном, содержит 71% диметилгексанов и 11% триметилиентанов, в то время как бензин, полученный с применением 2-бутена, содержит лишь 4,5% диметилгексанов и 76% триметилиентанов. С другой стороны, продукт, полученный алкилированием пзобутана 1-бутеном в присутствии жидкого фтористого водорода при 19°, аналогичен полученному с применением 2-бутена. При перегонке обоих алкилатов получают бензиновые фракции с концом кипения 150°, имеющие октановые числа соответственно 92,7 и 95,3 [20, 21]. Октановая фракция, полученная с выходом 57% от теоретического при алкилировании 1-бутеном, содержит 18% диметилгексанов и 82% триметилпентанов аналогичная фракция, полученная с выходом 68% при алкилировании 2-бутеном, содержит 9% диметилгексанов и 91% триметилпентанов. Аналогично алкилирование пзобутана в присутствии 97%-ной серной кислоты при 20° дает бензиновую фракцию с концом кипения 185° и октановым числом 92,9 при алкилировании [c.182]


    В алкилировании, катализированном кислотами, с олефинами будут реагировать только парафины с третичным углеродным атомом, такие как изобутан и изопентан, однако изооктан, 2,2,4-триметилпентан, обычный продукт алкилирования, не будет вести себя как изопарафиновый реагент [537]. Неогексан, содержащий четвертичный углеродный атом, не алкилируется. В промышленных масштабах используется только изобутан. Высокий природный уровень октанового числа и летучесть изопентана делают его достаточно ценным сырьем для получения товарных бензинов. При помощи реакций, катализированных хлористым или бромистым алюминием, получают нормальные углеводороды от бутана до додекана. Предполагают, что в данном случ 1е катализатор вызывает изомеризацию раньше, чем происходит алкилирование. [c.127]

    При алкилировании изобутана бутеном-1 и бутеном-2 при 30 в присутствии хлористого алюминия и хлористого водорода довольно значительную роль играют побочные реакции [38(1]. В каждом из этих случаев алкилат содержал только 21—23% октанов. При алкилировании бутеном-1 среди октанов преобладали диметилгексаны (6,4% триметилпентана, 11,5% диметилгексана и 3,5% метилгептана), в продуктах алкилирования бутеном-2 среди октанов преобладал триметилпентан (14,5% триметилпентана, 5,8% диметилгексанов и 2,6% метилгептанов). [c.323]

    При применении монометанолята хлористого алюминия побочная реакция идет в незначительной степени [38(1]. При алкилировании бутеном при 55° образуется жидкий продукт, содержащий 60% диметилгексанов (35% 2,4- и 2,5-, 17% 2,3-и 8% 3,4-диметилгексанов) и 9,5% триметилпентанов (6,5% 2,2,4- и 3% 2,3,4-триметилпентанов). При алкилировании же бутеном-2 при 28° получается жидкий продукт, содержащий 65% триметилпентанов (28% 2,2,4-, 22,5% 2,3,4-, 14% 2,3,3- и 0,5% 2,2,3-триметилпентанов) и только 4% диметилгексанов (3,5% 2,4- и 2,5- и [c.323]

    Алкилирование н-бутиленами. Выше уже указывалось, что алкилирование изобутана 1-бутеном в присутствии хлористого алюминия как катализатора ведет к образованию диметилгексанов в качестве основного продукта, в то время как алкилирование 2-бутеном дает триметилпентаны (см. стр. 182). Алкилирование при 30° в присутствии чистого хлористого алюминия и хлористого водорода ведет к многочисленным побочным продуктам выход октанов составляет только 21—23% [28в]. Побочные реакции значительно подавляются при применении монометанолата хлористого алюминия в качестве катализатора в этом случае алкилат содержит 69—70% октанов. Октаны (70% жидкого продукта), полученные при алкилировании 1-бутеном при 55°, содержали 87% диметилгексанов (25% 2,3-, 50% 2,4- и 2,5- и 12% 3,4-диметилгексана), и 13% триметилпентанов (9% 2,2,4- и 4% 2,3,4-триметилпентана). С другой стороны, октаны, полученные при алкилировании 2-бутеном (69% суммарного продукта), содержали только 5,5% диметилгексанов (0,5% 2,3- и 5% [c.192]

    При алкилировании кзобутана этиленом образуются с хорошим выходом гексаны, главным образом 2,3-диметилбутан, в присутствии хлористого алюминия нри температуре около 30° С или фтористого бора при 0° С. С изобутаном реагируют как и-, так и изо-бутилены. В результате этой реакции при использовании 98%-ной серной кислоты в качестве катализатора и температуре 20° С образуются изомеры октана с выходом около 50%. Половину октановой фракции составляет 2,2,4-триметилпентан. При употреблении в качестве катализатора фтористого водорода нри температуре процесса — 25° С в продуктах алкилирования повышается содержание 2,2,4-триметилпентана и снижается количество 2,3,3-и 2,3,4-триметилнентанов и диметилгексанов. Все эти изопарафины являются ценными компонентами высокооктановых бензинов. [c.110]

    Из приведенного выше обсуждения следует, что цепной механизм требует, чтобы при алкилировании изобутана бутеном-1 и бутеном-2 получались соответственно существенно отличные продукты. Первый из них должен давать в качестве главных продуктов диметилгексаны, а второй — триметилпентаны. Это, действительно, доказано применением хлористого алюминия (в частности, модифицированного для подавления побочных реакций) как катализатора [14г]. Продукт алкилирования бутеном-1 в присутствии монометанолата хлористого алюминия содержал около 60% (вес.) диметилгексанов и 10% триметилпентанов, тогда как продукт из бутена-2 содержал 65% триметилпентанов и только 4% диметилгексанов. Различие в составе было очевидным также по октановым числам бензинов с концом кипения 125°. Бензин, полученный из бутена-1, имел по американскому стандарту октановое число, равное только 76,1, а полученный из бутена-2—-94,1. [c.133]


Смотреть страницы где упоминается термин Триметилпентан реакция с хлористым алюминием: [c.191]    [c.315]    [c.120]    [c.103]    [c.11]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.829 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий реакции



© 2025 chem21.info Реклама на сайте