Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализатор влияние на кинетику процесса

    Влияние различных факторов на масштабирование. Очень часто в промышленности две аналогичные реакторные системы работают совершенно различно, например опытный реактор и промышленный реактор, или, более того, два идентичных промышленных реактора не дают одинаковых показателей работы. Эта разница является результатом различия в характере потоков в реакторе, кинетике процесса, эффективности катализатора и т.д. Отделение чистой кинетики от физических эффектов затруднительно. Поэтому прежде всего необходимо использовать ранее описанный (см. стр. 296) метод определения эффективности данного реактора или системы реакторов (последовательных, параллельных и т. д.). [c.420]


    Регенерации алюмосиликатного шарикового катализатора (изучению кинетики процесса и получению необходимых данных для расчета промышленных регенераторов) посвящено значительное количество работ. Всесторонне изучена проблема интенсификации процесса регенерации. Однако при увеличении скорости выжига кокса могут быть превышены допустимые для частицы алюмосиликатного катализатора тепловые нагрузки и катализатор выйдет из строя либо из-за спекания, либо из-за разрушения. В настоящем сообщении анализируется влияние условий выжига кокса на катализаторе на теплонапряженность зоны горения. [c.104]

    Влияние качественного и количественного состава катализатора на кинетику процесса изучали по изменению начальных скоростей расходования фенантрена и образования фенантренхинона. В отсутствие солей брома в составе катализатора окисление фенантрена не идет. При использовании совместно с бромидом только одного из ацетатов кобальта или марганца процесс протекает с очень низкими скоростями, как это видно из рис. 2 (кривые i, 1 и 2, 2 ). Одновременное применение бромида калия [c.132]

    Нами изучено влияние продуктов последовательного превращения катализаторов на кинетику процесса окисления парафина от начала реакции до максимальной глубины превращения углеводородов в жирные кислоты. [c.215]

    Таким образом, рассмотренные данные находятся в хорошем согласии с развитыми выше на примере Pt/Pt представлениями о природе потенциалов, устанавливающихся в растворах органических веществ. В то же время приведенные результаты свидетельствуют о сильном влиянии природы катализатора на кинетику процессов, протекающих на его поверхности. [c.225]

    Формально влияние катализаторов на кинетику процессов учитывается изменением предэкспоненциального множителя и энергии активации, входящих в уравнение Аррениуса. Рассмотрим мономолекулярную гомогенно-каталитическую реакцию (К — катализатор)  [c.63]

    Полученные нами данные указывают на сложность механизма влияния состава смеси на активность катализатора. На кинетику процесса, изучаемую в стационарных условиях, накладывается не только изменение поверхностного и фазового состава [4, 5], но и изменение доли поверхности контакта, на которой протекает катализ. [c.219]

    Изучению кинетики процесса регенерации кокса с зерна катализатора посвящено большое число работ. В некоторых из них специально рассматривается влияние процесса на температуру [c.295]

    Нормальный размер зерен промышленных катализаторов гидроформинга составляет примерно 3—5 мм. Однако специальное исследование влияния диффузии в зерне катализатора на кинетику каталитического дегидрирования циклогексана (на 100%-ном циклогексане и алюмохромовом катализаторе) показало, что в ряду размеров частиц катализатора 3,1 1,8 и 0,5 мм резко возрастает скорость реакции и увеличивается соотношение между промежуточными (циклогексен) и конечными (бензол) продуктами реакции [118], что определяется снижением эффекта диффузионного торможения. Такое явление имеет существенное значение при оценке процесса на пылевидных катализаторах (на этом мы остановимся ниже). [c.292]


    В настоящее время большое внимание уделяется изучению влияния металлов, отлагающихся на поверхности катализаторов в промышленных условиях, на свойства катализатора, материальный баланс процесса и качество продуктов крекинга. Металлы могут влиять не только на выход и химический состав продуктов крекинга. Накапливаясь на поверхности катализатора и обладая иными каталитическими свойствами, чем сам катализатор, они могут определенным образом влиять на характер распределения кокса по радиусу частиц в стадии крекинга и на кинетику и механизм выгорания кокса в стадии регенерации катализатора. [c.109]

    Количественные закономерности кинетики гетерогенного каталитического процесса существенно зависят от закономерностей равновесия и кинетики адсорбционных стадий. Это, в первую очередь, обусловлено тем, что в гетерогенном катализе скорость реакции зависит от поверхностных концентраций реагирующих веществ, а не от их объемных концентраций. Поэтому для гетерогенных процессов чрезвычайно важно установить влияние условий процесса на степень заполнения поверхности катализатора реагирующими веществами. [c.37]

    Чтобы выход продуктов реакции был оптимальным, надо учитывать влияние условий не только на само равновесие (на статику), но и на кинетику процесса, т. е. на скорость. Далеко не всегда при большой константе равновесия процесс можно использовать для получения вещества из-за медленности реакции. В этих случаях ускорение реакции часто достигается введением катализаторов ( 24), которые не смещают равновесия, а только ускоряют его установление 111, стр. 119]. Часто изменение какого-либо условия благоприятно влияет на ускорение реакции, но смещает равновесие в нежелательную сторону (увеличение температуры в синтезе NHg), или оказывает благоприятное влияние и на статику и на кинетику (повышение давления в синтезе NHj). Наконец, возможны случаи нежелательного влияния на статику и на кинетику (введение аргона в том же случае) и т. д. [c.31]

    Все эти процессы в настоящее время хорошо изучены и по ним имеется обширная публикация. Ниже даны краткие сведения о кинетике процессов гидрообессеривания и гидрооблагораживания нефтяных продуктов, применяемых катализаторах и влиянии основных факторов на процесс и качество очищенного продукта. [c.52]

    Исследование температурной зависимости конверсии пиперилена на Na-формах цеолитов показало различие их активностей (рис. 1.26). Как видно из рисунка, на цеолитах NaA и NaM гидрирование пиперилена начинается При температуре 60 °С и реакция практически полностью завершается при 160-180 °С. В то же время цеолиты X, Y, эрионит менее активны в гидрировании пиперилена реакция начинается при температурах 120-140 °С и При 200-200 °С достигается 60%-ная конверсия исходного углеводорода. Таким образом, наиболее активными катализаторами гидрирования этого диенового углеводорода являются Na-формы цеолитов А и морденит. Менее активны цеолиты X, У и эрионит. Такой ряд активности не совпадает с последовательностью изменения каталитической активности Na-форм цеолитов в гидрировании олефиновых углеводородов (2-метилбутен-2, циклогексен), когда максимальной активностью обладал NaY. а NaA и NaM были менее активны (см. разд. 1.1), Причина этого, возможно, связана с различным влиянием диффузии молекул реагентов во внутрикристаллических каналах цеолитов на кинетику процессов. [c.42]

    Поэтому установление предельной толщины слоя, меньше которой реакция проходит в кинетической области, т. е. скорость ее определяется только скоростью реакции поликонденсации, имеет очень важное зачение. Было высказано предположение [49], что при толщине слоя расплава 0,5 мм исключается влияние диффузии на общую кинетику процесса, тогда как при использовании более толстых слоев наблюдается переход в диффузионную область. Эти выводы малочубедительны из-за недостаточно надежного определения порядка реакции и отсутствия данных для более тонких слоев. Процесс поликонденсации в гонких слоях полиэтилентерефталата был исследован Стевенсоном [50], Кэмпбеллом [51] и описан в ряде патентов [52]. Чефелин [53] использовал методику Маркеса поликонденсации в вакууме в запаянных вращающихся ампулах и динамометрический метод с применением весов Мак-Бена с кварцевой спиралью и показал, что только в пленке расплава толщиной 0,005—0,02 мм исключено влияние диффузии на скорость реакции и константа скорости возрастает при повышении степени полимеризации исходного полимера, концентрации катализатора и температуры. Он же привел данные [53] о том, что в области конверсии 95—98% при 280 °С и остаточном давлении 0,16 кПа (1,25 мм рт, ст.) выделение этиленгликоля протекает как реакция второго порядка с константой скорости К-= 1,30-10 г-мoль с" при концентрации ацетата сурьмы 0,092% (масс.). [c.69]

    Механизм и кинетика процесса подробно изучались советскими авторами [7—10] Поскольку гидрирование окиси азота водородом происходит на поверхности платины, скорость процесса может лимитироваться скоростью абсорбции газов кислотой или скоростью их диффузии в жидкости к поверхности платины. Исключить влияние этих факторов можно соответствующим режимом перемешивания (увеличивая поверхность раздела фаз и, следовательно, скорость абсО(рбции). Если таким образом исключить влияние явлений переноса на ход реакции, реакция протекает уже не по диффузионной, а по химической кинетике. При этом, как видно из рис 47, скорость образования гидроксиламинсульфата пропорциональна концентрации катализатора. [c.139]


    Кинетика и механизм процесса гидрирования кислорода подробно рассмотрены в работах [66, 68]. Установлено, что на активность и другие свойства катализатора большое влияние оказывает состав реакционной смеси, поэтому кинетику процесса нельзя описать одним уравнением. [c.403]

    Исследование кинетики восстановления крупных гранул промышленных нанесенных никелевых катализаторов показало, что внутридиффузионное торможение не оказывает решающего влияния на продолжительность восстановления. Требуемая температура восстановления таких катализаторов значительно превышает температуру восстановления закиси никеля, что объясняется тормозящим влиянием водяных паров, образующихся при испарении адсорбционной влаги, полное удаление которой происходит при сравнительно высоких температурах. Показано, что принятые в производственных условиях продолжительность и температура восстановления катализаторов чрезмерно велики. Если исключить насыщение катализатора влагой в процессе хранения, то продолжительность его восстановления можно сократить до 1 ч при 350—450 С (в настоящее время на производстве восстановление осуществляется не менее суток при температуре до 800° С). [c.106]

    Объемная скорость подачи сырья оказывает влияние на процесс риформинга как параметр, обратный времени контакта сырья с катализатором. В соответствии с закономерностями химической кинетики (см. 7.2.2) с увеличением объемной скорости (то есть уменьшением времени контакта) сырья снижается глубина реакций ароматизации и более значительно реакций гидрокрекинга парафинов. Следовательно, при этом понизится выход продуктов гидрокрекинга - легких углеводородных газов и кокса на катализаторе. Ароматические углеводороды будут образовываться преимущественно за счет реакций дегидрирования нафтенов, протекающих значительно быстрее других. В результате повышение объемной скорости подачи сырья приводит к  [c.545]

    Подробные исследования процесса нолимеризации бутадиена в эмульсии были начаты Догадкиным, который разработа.г методику исследования полимеризации в эмульсии и установи, такие важнейшие закономерности процесса, как влияние природы и ко.1Ичества эмульгаторов, реакции среды, количества катализаторов, исследовал кинетику процесса в присутствии диазоаминобензола и нашел, что оптимальный каучук получается при неполной нолимеризации бутадиена. Этот способ подвергался всестороннему изучению рядом ученых и получил большое распрострапение. [c.385]

    A. X. Кинца (Берлин, ГДР). Я хотел бы сделать одно замечание по поводу гидрирования ацетона (доклад 44). Дело в том, что кинетика этой реакции в присутствии никеля и его сплавов с железом и медью довольно сложна. В интервале температур 60—100° С повышение парциального давления от 50 до 300 мм рт. ст. приводит к изменению формального порядка по ацетону от 1 до —1 с прохождениеА через нулевое значение. Согласно напшм данным, ацетон при определенном парциальном давлении в зависимости от состава катализатора и температуры вызывает отравление катализатора. Для никеля это отравление наступает при парциальном давлении выше 200 мм рт. ст. Поскольку автор работал именно при таком давлении, я хотел бы обратить внимание на это обстоятельство. Точки изменения порядка р еакции, так же как и активность катализатора, сильно зависят от состава сплавов Ni — u, причем оказалось, что положение уровня Ферми, измеренного методом контактной разности потенциалов, не влияет на активность катализатора ш кинетику процесса. По нашему мнению, это свидетельствует о влиянии на процесс локальных электронных свойств, что особенно важно в случае взаимодействия с такими полярными молекулами, как молекулы ацетона. [c.474]

    При применении безградиентных реакторов поддерживать изотермический режим несложно, удается итйежать погрешностей в измерениях, обусловленных осевой диффузией в случае гетерогенных каталитических реакций обеспечивается возможность сильно ослабить или исключить влияние процессов диффузии в зерне катализатора. Поэтому для точного исследования кинетики процесса безградиентные реакторы, как правило, предпочтительнее. [c.36]

    Вопрос о скорости химических реакций, о влиянии на скорость различных факторов и о механизме реакций — предмет изучения в химической кинетике. Этот раздел химии открывает возможность различными способами изменением температуры, давления, концентраций, введением катализаторов, облучением светом и т. д. — влиять на скорость установления равновесия, на скорость желательных и нежелательных реакций, самопроизвольное течение которых термодинамически возможно. Изучение кинетики процессов дает возможность глубже понять их механизм, без чего нельзя управлять ими. Если определение энергоспособности (АН) и работоспособности (АС) процесса требует только знания энтальпии и свободной энергии образования начальных и конечных веществ при заданных условиях, то скорость процесса зависит не только от того, какие вещества стоят в правой и левой частях равенства она также всегда зависит от переходного состояния (промежуточных продуктов), которые далеко не всегда удается выделить и изучить. Поэтому проблемы кинетики очень сложны. [c.39]

    При протекании каталитической реакции через промежуточные комплексы влияние растворителя будет обусловлено его снособ-ностью образовывать комплексы с активными атомами поверхности катализатора. Если растворитель обладает высокой электронной донорно-акцепторной способностью или высокой л-электронной плотностью, то он сам будет входить в сферу лигандов комплекса и может понижать активность катализатора. Наоборот, достаточно инертные, неполярные растворптелп типа парафинов и циклопарафинов будут мало влиять на механизм комплексообразованпя. На кинетике процесса все это будет отражаться в виде ускорения или замедления скорости реакции при замене растворителя или усложнения формального уравнения кинетики вследствие изменения концентрации пли характера растворителя по ходу реакции. [c.50]

    При импульсном методе возможны два предельных случая. Если исходное вещество и продукты реакции хроматографически разделяются на катализаторе по мере продвижения вдоль его слоя, наблюдается хроматографический режим, когда на кинетику процесса оказывают влияние адсорбционные факторы. Если же такое разделение отсутствует, наблюдается нехроматографический режим, к которому могут быть применены расчетные методы классической кинетики [22]. [c.46]

    В процессах с движущимся катализатором, а особенно в кипящем слое, влияние гидродинамических факторов еще сильнее, чем в процессах с неподвижным слоем катализатора. Поэтому при их разработке целесообразнее всего исследовать различные стороны процесса отдельно. Активность и стабильность катализатора и кинетику химических превращений наиболее удобно исследовать на проточно-циркуляционных или других кинетических установках. Истираемость катализатора, скорость падения активности, условия регенерации следует изучать в специальных условиях. Целесообразно отдельно исследовать гидродинамические характеристики аппарата. Однако практически последнее редко удается осуществить полностью и с достаточной надежностью и поэтому пока часто нельзя обойтись без предварительного моделирования процесса в целом в лабораторных условиях. Поскольку при этом целью является фактически исследование не катализатора, а аппарата, то лабораторную аппаратуру грелательно выполнять в наибольших возможных размерах, чтобы устранить влияние стенок и других особенностей малых аппаратов. [c.418]

    Исследовалось влияние условий процесса на отдельные направления превращений. Так, при крекинге высококипящих парафинов повышение давления до определенной величины (50 кгс/см ) увеличивает скорости реакций расщепления и изомеризации Дальнейшее повышение давления тормозит эти реакции, причем более интенсивно реакции изомеризации. Эту зависимость можно объяснить, очевидно, тем, что, как показал еще М. Г. Гоникберг изомеризация насыщенных углеводородов является реакцией дегидрогидрирования, т. е. включает стадию дегидрирования, которая, согласно закону действующих масс, должна тормозиться при повышении давления водорода. Позднее это было подтверждено работами А. А. Петрова и других исследователей. При исследовании кинетики гидрокрекинга этана и пропана на никелевом катализаторе также было найдено что реакция ингибируется водородом. [c.318]

    Закономерности ионной полимеризации могут быть рассмотрены только в общих чертах, так как в каждом конкретном случае в зависимости от природы мономера, катализатора к среды процесс имеет свои особенности. Энергия активации ионной полимеризации ниже, чем радикальной, поэтому процесс идет прн низких температурах, часто отрицательных, с очень высокой скоростью. Ионная полимеризация, как любой цепной процесс, протекает в три стадии инициирование, рост цепи, ограничение роста. Однако в отличие от радикальных процессов функция катализатора не ограничивается только участием в реакц[ ях инициирования катализаторы влияют на реакцик роста и обрыва цепи, участвуют в реакциях переноса. Это определяет кинетику процесса н структуру получаемого полимера. Прн радикальной по.лимернэации инициатор не оказывает влияния на структуру полимера. [c.122]

    Сопоставление вышеприведенных работ по кинетике гидрогено-лиза глюкозы, сорбита и глицерина показывает различие (иногда существенное) в полученных результатах, которое, очевидно, объясняется (помимо отличий в методике кинетического эксперимента) использованием разных концентраций катализатора и крекирующего агента. Таким образом, полученные в каждой из работ константы скорости, значения энергии активации, предэкспоненци-альные множители имеют локальное значение, так как привязаны к фиксированным значениям остальных параметров. Дальнейшие исследования кинетики этого сложного процесса целесообразно направить на определение истинных порядков реакции каждой из стадий, исследование щелочного ретроальдольного расщепления глюкозы, взаимного влияния концентраций катализаторов гидрирования, расщепления и гомогенных сокатализаторов, влияния дезактивации катализатора в ходе процесса и других факторов. Когда математическая модель будет учитывать влияние всего десятка факторов, воздействующих на выход целевых продуктов при гидрогенолизе, ее можно будет применить для целей оптимизации и управления. [c.131]

    Для количественного определения влияния внутреннего переноса на кинетику процесса, определения эффективности использования внутренней поверхности р, т.е. для моделирования процесса в зерне необходимо знать радиус пор уэ, ионстаиту скорости в кинетической области и эффективный коэффициент диффузии Значения для реакций гидрогенолиза этана и пропана известны. Радиус пор и распределение их по размерам определяют методом ртутной по-рометрии. Однако несмотря на растущее совершенствование этого метода, практически невозможно получить полное представление о сложной структуре катализатора. Что касается 4 , то его значение можно оценить лишь приближенно. [c.67]

    Исследование кинетики каталитических процессов - одним из основных методов определения механизма катализа, знание которого необходимо для решения проблем научного и практичесюго плана,Кинетические данные при этом до.таны быть надежными и неискаженными макроскопическими факторами. К последним относят физические этапы переноса вещества.и тепла, затруднения в осуществлении которых приводят к концентрационным и температурным неоднородностям в реакционном объеме и внутри кусков пористого катализатора и тем самым оказывает искажающее влияние на кинетику процессов /17 К одному из видов макрофакторов В.А.Ройтер отнес такхе химические неоднородности в ишхте и по глубине зерен контакта, которые могут возникать вследствие химического взаимодействия катализатора с реакционной средой /2-А7 и неучет которых, также как и первых двух типов искажений, обесценивает результаты исследований как в теоретическом, так и в практическом отношениях. Большое внимание этому важному для катализа принцицу о воздейотвии реакционной системы на катализатор уделяет в своих работах Г.К.Боресков /Ь- . [c.90]

    Таким образом, предложен экспевиментальыый прием, названный методом концентрационных тестов, помоляющий оценивать влияние на кинетику процессов изменений активности катализаторов за счет взаимодействия их с реакционной средой. [c.100]

    Исследована кинетика гидрогенолиза этана и пропана при очистке природного газа. Выполнено моделирование процесса для отдельного зерна катализатора и получеяо уравнение, учитывающее влияние внутреннего переноса на кинетику процесса. [c.180]

    При Сополимеризации винилфурана с бутадиеном получаются синтетические каучуки типа бутадиенстирольных (25). Разработана рецептура и режим совместной полимеризации винилфурана и бутадиена, изучена кинетика процесса и влияние на нее таких факторов, как соотношение мономеров, pH среды, количество катализатора. Бутадиенвинилфурановые каучуки отличаются высокими физико-механическими показателями, являются удовлетворительными по морозостойкости, а по маслостойкости значительно превосходят дивинилстирольные каучуки. [c.209]

    Влияние некоторых условий переэтерификации на состав получающегося продукта было описано в литературе [25]. На рис. 3.17 приведен состав переэтерификата после отгонки избыточного этиленгликоля в зависимости от вида катализатора и от его смеси с трехокисью сурьмы или фосфорными кислотами, введенными вместе с катализатором. Кривые на этом рисунке показывают различное влияние добавок на кинетику процессов переэтерификации и олигомеризации (начальной стадии поликонденсации). Чем менее активен катализатор в реакции переэтерификации, т. е. чем более сильно выражены его основные свойства (например, ацетат кальция), тем больше в переэтерификате мономерного дигликольтерефталата и меньше олигомеров, Поскольку ацетат кальция недостаточно активен и как катализатор поликонденсации. Ацетат цинка, очень активный катализатор переэтерификации, активен также и как катализатор поликонденсации. Каталитические свойства ацетатов в значительной степени подавляются фосфор- [c.50]

    На установке проточного типа исследовано влияние на степень превращения метана давления (1—20 ат), температуры (700— 900° С), соотношения СОз СН (1,9—6,3) в исходной смеси и объемной скорости. С целью изучения кинетики процесса объемная скорость Еыбиралась такой, чтобы процесс протекал вдали от равновесия. Катализатор ГИАП-3-6Н, использовавшийся в экспериментах в виде зерен неправильной формы размером 1 —2 мм, имел следующие основные характеристики содержание N1 —7%, удельная поверхность 8 и пористость 33%. Для удобства сравнения получаемых данных был взят катализатор одной промышленной партии. Перед проведением опытов он восстанавливался в одинаковых условиях в токе электролитического водорода. [c.58]

    Активность карбоната стронция в значительной мере определяется степенью заполнения поверхности катализатора адсорбированной водой. Кинетика процесса носпт сложный характер период резкого начального ускорения подвержен влиянию примесей и полярных добавок стационарная полимеризация протекает по первому порядку относительно мономера. Концентрация активных центров составляет примерно 10 на 1 см , что, скорее всего, отвечает концентрации поверхностных дефектов. В пользу большой неоднородности активной поверхности свидетельствуют также исследования закономерностей активации катализатора при адсорбции воды [121, 122]. [c.263]

    Главной практической задачей теории катализа в конечном итоге является разработка научных методов подбора веществ (катализаторов), оказывающих влияние на скорость химических превращений. За последние годы учеными многих стран разработаны новые технические средства приобретения информации о различных параметрах каталитических материалов и процессов, явлений в хемосорбированных комплексах с привлечением современных методов исследования свойств веществ, участвующих в химических превращениях (см. 3.5). Однако, как и прежде, эти методы еще гге привели к раскрытию механизма каталитической активности. Вопросы о том, какие же свойства веществ являются определяющими и что еще нужно учитывать при подборе катализаторов, до конца не выяснены. С точки зрения излагаемых новейших исследований дополнительным новым и, но-видн-мому, решающим физическим фактором при подборе катализаторов, который до сих пор учитывался недостаточно, является фактор выявления электромагнитных критериев кинетики процесса. Выявление электромаг-70 [c.70]


Смотреть страницы где упоминается термин Катализатор влияние на кинетику процесса: [c.177]    [c.2]    [c.317]    [c.155]    [c.12]    [c.113]    [c.287]   
Теория рециркуляции и повышение оптимальности химических процессов (1970) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Катализатор кинетика

Кинетика процессов



© 2025 chem21.info Реклама на сайте