Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизмы реакций модифицирования катализатора

    В большинстве работ, направленных на выяснение механизма каталитических реакций и природы активных центров, исследуют изменение активности катализаторов и состава продуктов при регулируемом модифицировании, в частности при изменении природы катионов, степени катионного обмена и условий активации. Параллельно с помощью ИК-спектроскопии или других методов изучается строение каркаса и структура активных центров. По полученным данным делают предположения о взаимосвязи механизмов реакции и природы активных центров. Другой подход к изучению механизмов заключается в том, что исследуется влияние изменения структуры исходного углеводорода на каталитические свойства определенного цеолита, состав и условия предварительной обработки которого остаются постоянными. Однако работ в этом направлении выполнено пока сравнительно немного. Было бы желательно, чтобы будущие исследования проводились с учетом двух обстоятельств, которым раньше уделялось недостаточное внимание. Во-первых, надо иметь в виду, что структура поверхности цеолитов очень сильно зависит от условии активации и поэтому каталитические и физикохимические исследования должны проводиться на образцах, активированных в идентичных условиях. Во-вторых, для сопоставления структурных и каталитических свойств необходимо располагать данными о начальной активности катализаторов, которые лучше всего получаются в дифференциальном, а не в интегральном реакторе, [c.115]


    О механизме реакции диспропорционирования парафиновых углеводородов существуют различные точки зрения для алюмоплатиновых катализаторов, модифицированных хлором, предполагают следующее протекание реакций [45]  [c.30]

    Механизм реакции раскрывают также данные, полученные при дегидрировании циклогексана под атмосферным давлением на алюмоплатиновых катализаторах, модифицированных оловом [26, 27]. При введении в алюмоплатиновый катализатор от 2,2 до 4,2% (по массе) олова значительно снижается скорость образования бензола. Продукты реакции, наряду с бензолом, содержат циклогексен и крайне незначительные количества циклогексадиена. По-видимому, как и при отравлении алюмоплатинового катализатора серой, под влиянием олова изменяются относительные скорости отдельных стадий реакции, что позволяет выявить стадийный механизм реакции дегидрирования циклогексана  [c.14]

    Работы [2, 4, 5] посвящены влиянию условий модифицирования катализатора и структуры модифицирующего агента на степень асимметрического гидрирования метилового эфира ацетоуксусной кислоты в автоклаве. Однако их авторы не исследовали кинетику реакции, что необходимо для понимания механизма асимметрического гидрирования. [c.254]

    Известно, что полимеризация некоторых полярных мономеров в присутствии типичных и модифицированных циглеровских катализаторов протекает по свободнорадикальному механизму. Результаты, полученные авторами при исследовании полимеризации винилхлорида и хлоропрена с использованием катализаторов другого типа, можно объяснить также исходя из радикального механизма реакции, однако необходимо учитывать возможность одновременного протекания реакции по ионному и по координационному механизмам. [c.32]

    Последнее обстоятельство, по-видимому, является очень важным, так как оно в конечном счете связывает воедино структурный (геометрический) и электронный факторы в катализе. Ведь одноточечная промежуточная адсорбция (вполне вероятная и доказанная) не объясняет влияния константы решетки на катализ, а это влияние весьма велико. Таким образом, подходя с разных сторон к механизму реакций, как в школе Баландина, так и в школе Рогинского приходят к обш,им выводам. А. А. Баландин давно отметил и доказал роль геометрии решетки катализатора в катализе. С. 3. Рогинский показал, что изменения геометрии решетки путем модифицирования определяются электронным строением кристалла (как и вся структура решетки, по Юм-Розери, определяется электронным фактором). О. В. Крылов в лаборатории С. 3. Рогинского пришел к выводу о влиянии расстояния Ме—X катализатора на ход катализа, что указывает на двухточечную промежуточную хемосорбцию. Это еще один факт, указывающий на общие выводы разных советских школ по вопросу о механизме гетерогенного катализа. [c.103]


    В зависимости от механизма передачи электронов в твердом теле в электронном обмене с адсорбированными частицами участвуют либо обобществленные электроны твердого тела, либо локализованные на катионах решетки. Поскольку окислительные превращения углеводородов протекают на полупроводниках, коллективные электронные свойства должны играть определенную роль в катализе. Кислород-углеводородные промежуточные формы заряжены, и поэтому скорость реакции будет зависеть от их поверхностных концентраций и величин зарядов. В тех случаях, когда наблюдается связь селективности процесса с величиной работы выхода электрона ф катализатора, можно направить окисление углеводородов на таких катализаторах в сторону мягкого или глубокого окисления, регулируя коллективные электронные свойства твердого тела (работу выхода электрона). На рис. 3 показано изменение селективности окисления пропилена в акролеин на закиси меди в зависимости от изменения работы выхода электрона (путем модифицирования катализатора добавками). [c.230]

    Эта идея о существовании бифункциональных катализаторов, или одновременного действия нескольких каталитических точек , чрезвычайно важна. Как будет показано в гл. IV, эта идея является основой современных представлений о действии активных мест в ферментах. Для гидролиза сложных эфиров на это указывает Лейдлер [251, который рассматривает одновременную атаку молекулы воды и частиц с кислотными свойствами. В модифицированной форме это представление встречается в гетерогенном катализе в механизме ХВВ (см. стр. 242), а также в современных взглядах на многие реакции гидрогенизации или обмена. [c.66]

    При подборе следует учитывать и другие, не рассмотренные нами механизмы сопряжения, в частности сопряжение через образование общих сложных активных комплексов (обычных или переходных), содержащих молекулы участников обоих сопряженных процессов и активные центры катализаторов. Сопряжение часто нелегко отличить от воздействия на реакцию попутного модифицирования и отравления катализаторов. [c.33]

    На скелетном Ni, модифицированном 0-винной кислотой, изучено влияние различных условий реакции температуры, соотношения реагентов, давления водорода, полярности растворителя на скорость реакции н асимметрический выход (—)-этил-Р-оксибутирата (I) при гидрировании ацетоуксусного эфира (П). На скелетных Си- и Со-катализаторах изучено влияние рН-модифи-цирующего раствора на скорость и асимметрический выход. Асимметрический выход I при гидрировании на Ш не зависит от степени гидрирования, растет с увеличением начальной концентрации субстрата, проходит через максимум с увеличением температуры реакции в интервале 25—120° (максимум при 70—80°) и количества катализатора (максимум при отношении субстрат/Ь 10). Асимметрический выход больше при гидрировании при атмосферном давлении и несколько уменьшается при повышении давления до 120 ат Нг. Скорость реакции и асимметрический выход больше при гидрировании в протонных полярных растворителях и уменьшаются с уменьшением полярности. Предложена схема реакции и обсужден ее механизм. [c.467]

    Предлагаемый обзор посвящен проблемам физикохимии цеолитов и цеолитного катализа. В нем рассмотрены особенности структуры цеолитов, обсуждены эффективные способы модифицирования цеолитных катализаторов. Проведен анализ существующих представлений о механизме действия цеолитных систем в реакциях кислотно-основного и окислительно-восстановительного типов, а также рассмотрены процессы бифункционального катализа на металлцеолитных контактах. Особое внимание уделено цеолитсодержащим катализаторам, которые составляют основу современной промышленности переработки углеводородного сырья. [c.39]

    Вероятно, тот же механизм модифицирования регулированием заряжения поверхности лежит в основе давно известного промотирующего действия щелочных добавок на ряд старых промышленных катализаторов. Сходные схемы, но с положительным заряжением переходного комплекса получаются при модифицировании окисных контактов окисления СО. Поэ- тому добавки щелочей замедляют реакцию и повышают ее энергию активации [36]. [c.43]

    На практике переэтерификации подвергают смеси различных масел, что приводит к очень сложной композиции глицеридов и обеспечивает значительное модифицирование свойств продукта. Точный механизм и природа активного катализатора этой реакции до сих пор остаются дискуссионными. [c.602]

    В литературе имеется ряд работ, где детально исследовались и анализировались адсорбционно-химические равновесия с целью выяснения механизма соответствующих каталитических реакций и соотношений скоростей стадий, характера неоднородности каталитических поверхностей, величин прочности поверхностных соединений и их энергий связей, как и других термодинамических характеристик поверхностного слоя, а также для изучения действия модифицирующих добавок. Подробно изучались равновесия поверхностного азота с водородом в реакции синтеза аммиака [179], равновесие поверхностного кислорода с водородом (У.87) на никелевых катализаторах [442—444], на серебре, платине и палладии [444, 447], на окислах железа, кобальта, меди и ванадия, модифицированного платиной [444—446] равновесие поверхностного углерода с водородом на никеле [47, 437, 438]. Результаты этих исследований дают важную информацию, способствующую лучшему пониманию закономерностей каталитиче- [c.236]


    Этот цепной механизм легко объясняет значительное различие продуктов, получаемых алкилированием изобутана 1-бутеном и 2-бутеном при применении хлористого алюминия в качестве катализатора, хотя нри сернокислотном и фтористоводородном алкилировании оба эти олефина образуют практически одинаковые продукты. Например, октановые числа бензиновых фракций с концом кипения 125°, получаемых алкилированием пзобутана 1-бутеном И 2-бутеном при 30° в присутствии хлористого алюминия и хлористого водорода, составляют соответственно 74,5 и 83,5 в обоих случаях алкилат содержит только 21—23% октанов [28в]. Если применять модифицированный катализатор на основе хлористого алюминия, а именно монометанолат хлористого алюминия, побочные реакции подавляются, вследствие чего при алкилировании 1-бутеном ири 55° получают жидкий продукт, содержащий 70% октанов октановое число бензиновой фракции с концом кипения 125° в этом случае равно 76 [28в]. Алкилирование 2-бутеном при 28° в присутствии монометано-лата хлористого алюминия дает жидкий продукт, содержащий 69% октанов бензиновая фракция с концом кипения 125° имеет октановое число 94. Основной причиной различия октановых чисел является изомерный состав октановых фракций бензин, полученный алкилированием 1-бутеном, содержит 71% диметилгексанов и 11% триметилиентанов, в то время как бензин, полученный с применением 2-бутена, содержит лишь 4,5% диметилгексанов и 76% триметилиентанов. С другой стороны, продукт, полученный алкилированием пзобутана 1-бутеном в присутствии жидкого фтористого водорода при 19°, аналогичен полученному с применением 2-бутена. При перегонке обоих алкилатов получают бензиновые фракции с концом кипения 150°, имеющие октановые числа соответственно 92,7 и 95,3 [20, 21]. Октановая фракция, полученная с выходом 57% от теоретического при алкилировании 1-бутеном, содержит 18% диметилгексанов и 82% триметилпентанов аналогичная фракция, полученная с выходом 68% при алкилировании 2-бутеном, содержит 9% диметилгексанов и 91% триметилпентанов. Аналогично алкилирование пзобутана в присутствии 97%-ной серной кислоты при 20° дает бензиновую фракцию с концом кипения 185° и октановым числом 92,9 при алкилировании [c.182]

    Эти факты наводят на мысль, что, хотя и нельзя исключить возможность протекания реакции элиминирования по протолитическому механизму, но этот механизм не единственный и даже не основной. Подтверждением этого вывода можно считать также результаты работы [446, 447] по исследованию разложения тиофана и дибутилсульфида на промотированных щелочью алюмосиликатах. В работе показано, что внесение ионов натрия в алюмосиликатный катализатор не изменяет его активность в отношении превращения тиофана некоторое уменьшение активности наблюдается в отношении крекинга ди-н-бутилсульфида. Авторы делают вывод, что модифицирование алюмосиликата сульфидом натрия приводит к повышению избирательности в отношении образования меркаптана из дибутилсульфида. Если это верно, то можно полагать, что природа активного компонента катализатора, ускоряющего реакции разложения тиоэфира до сероводорода и меркаптана, различна. Однако внимательное рассмотрение результатов [446, 447] показывает, что такой вывод сделан авторами лишь на основании данных о соотношении выходов меркаптана и сероводорода. Если рассчитать избирательность по отношению выхода данного продукта к общему превращению, как это принято, то оказывается (табл. 19), что модифицирование алюмосиликата ионами натрия уменьшает общую степень превращения тиоэфира при этом снижается выход как меркаптана, так и сероводорода, а избирательность по меркаптану для большинства опытов либо постоянна, либо ниже, чем в присутствии непромотированного катализатора. [c.95]

    Мы смогли остановиться лишь на небольшой части встречаюш ихся здесь проблем и полученных интересных результатов. В частности, не было возможности упомянуть очень важный и интересный вопрос о механизмах регулирования катализаторами химического и пространственного строения продуктов реакции и тесно связанную с этим проблему общих и специфических механизмов осуществления кибернетических функций в гомогенном и гетерогенном катализе. Без существенного продвижения наших знаний о внутренней кибернетике катализа и о ее механизмах вряд ли возможны крупные успехи в предвидении катализаторов для новых типов сложных реакций. Предпосылки для такого предвидения имеются и заключаются они в следующем. Установлены определенные широкие качественные корреляции между электронно-физическими свойствами твердых тел и их каталитической активностью. Многое сделано для выяснения механизма модифицирования и развития теории приготовления катализаторов. Серьезные успехи достигнуты в кинетике каталитических процессов и в изучении их механизмов. Благотворное влияние оказывает развитие родственных гетерогенному катализу новых разделов гомогенного катализа. Быстро совершенствуется экспериментальная техника исследований. Поэтому, несмотря на отсутствие законченных обобщающих теорий катализа, уже сейчас имеется возможность решать экспериментальные задачи изыскания новых и улучшения известных катализаторов быстрее и эффективнее, чем раньше. В ряде случаев возможно и предвидение катализаторов для простейших реакций. [c.37]

    Таким образом, сочетание модифицированного принципа геометрического соответствия [62] с моделью циклического переходного состояния, в состав которого входят и субстрат и катализатор, по-видимому, наиболее логично может объяснить механизм реакции Сз-дегид-роциклизации углеводородов на поверхности Pt/ . Что же касается некоторой модификации принципа геометрического соответствия, то здесь необходимо сделать небольшое пояснение. В тех случаях, когда переходное состояние близко по геометрическим параметрам к исходным молекулам и деформации невелики, наше толкование геометрического соответствия сливается с его толкованием в мультиплетной теории. В случае же Сз-дегидроциклизации и гидрогенолиза пятичленного кольца положение иное в свободном циклопентане все пять С—С-связей равны, а в переходном состоянии одна из них сильно растянута и валентные углы искажены. Поэтому положения мультиплетной теории в их классическом толковании здесь неприменимы. В связи с этим предложена [63] новая (в определенном смысле, более строгая) формулировка должно иметься геометрическое соответствие между молекулами в переходном состоянии и поверхностью катализатора. Такого рода де-формационно-мультиплетные представления позволили охватить несколько больший круг явлений, че.м это делала мультиплетная теория, не теряя ничего пз достижений последней. В частности, эти соображения хорошо согласуются с конформационными представлениями, благодаря которым можно объяснить ряд тонких эффектов, проявляющихся в ходе Сб-дегидроциклизации. [c.210]

    Если такой механизм реакции справедлив и в некоторых случаях можно ожидать полной дегидрогенизации атомов углерода, то при гидрогенолизе парафинов может происходить зауглероживание металлических центров платиновых катализаторов риформинга. Справедливость такого предположения подтверждает промышленная практ ика каталитического риформинга,[761, Для подавления акти.в-ност кайлнШбрО риф рмйнга реакциях гидрогенолиза применяют разные методы (осернение, модифицирование добавками некоторых металлов— см. гл. 2), в результате чего эти реакции перестают играть существенную роль в нормальных условиях процесса. [c.44]

    Некоторые общие вопросы механизма стереоспецифического катализа на дисимметрических модифицированных катализаторах. Клабуновский Е. И. Каталитические реакции в жидкой фазе . Алма-Ата, Наука , 1972, стр. 70. [c.458]

    Наличие в А. группы — N, понижающей электронную плотность двойной связи, способствует каталитич. полимеризации А. по анионному механизму. Т. к. реакция очень чувствительна к обрыву цепей вследствие захвата протона, в качестве реакционной среды применяют нуклеофильные растворители, напр, тетрагидро-фуран, гексан, толуол, диметилформамид, диметил-сульфоксид, а также нек-рые соединения со слабо выраженными протонодонорными свойствами. Катализаторами служат алфиновые соединения, алкоксиды, алкилы пли арилы металлов (наиболее часто бутилли-тий), модифицированные катализаторы Циглера, реактивы Гриньяра. При темп-рах от —50 до —80 °С образуется П. белого цвета мол. массы до (5—7)-10<> при О °С и выше — II. более низкой мол. массы желтого цвета. Чем выше диэлектрич. проницаемость среды, тем больше уд. вес реакций обрыва в результате передачи цепи. [c.23]

    Сиккативы катализируют реакцию аутооксидации высыхающих масел и смол, модифицированных высыхающими маслами. В качестве сиккативов долгое время использовали металлические соли органических кислот (линолевой и нафтеновой), но до сих нор механизм действия этих катализаторов остается невыясненным. Основным компонентом льняного масла является линолевая кислота. В процессе высыхания краски на льняном масле, содержащей в качестве пигмента окись металла (например, свинцовый сурик), образуется in situ небольшое количество линолеата свинца, так что до некоторой степени происходит аутокатализ. [c.377]

    Еще одна возможная трудность при использовании цеолитных катализаторов-отсутствие селективности из-за широкого разброса свойств активных центров. Поэтому модифицирование цеолитов с целью получения максима.пьной селективности-достаточно сложная задача, и для ее реще-ния требуется не только понимание механизма реакции, но и детальное знание химии цеолитов. [c.57]

    Металлические контакты, хсрошо катализирующие гидрогенизацию или присоединение водорода, считали хорошими примерами дегидрогениза цио иной теории реакций гетерогенного окисления. Из термодинамических соображений следует, что вещества, ускоряющие гидрогенизацию, должны катализировать также дегидрогенизацию. Позднейшие работы Виланда [51, 52], повидимому, указывают, что оба предположения, именно активацию окисляющего вещества и лабилизацию водорода в окисляемом веществе, следует признать правильными при объяснении функций катализаторов в реакциях окисления. Механизм действия металлов при автоксидации альдегидов был настолько модифицирован, что Виланд предполагал, что ионы Ре " дают лабильные комплексы с молекулами окисляемого вещества, т. е. они присоединяются к связи С=0 и активируют ее. Для гидратированных форм предполагается, что ионы идут к [c.575]

    Следует отметить сходное распределение продуктов термического ьте-кинга н-гексана на цеолитах К , ЬаХ-60 и Са> аУ-19. Было показано [18, 100], что на подобных катализаторах оно согласуется с радикальным механизмом, несколько модифицированным из-за влияния повышенной концентрации углеводородов в полостях [100] или из-за наличия небольшого числа кислотных центров. Эффективность цеолитов в качестве промоторов переноса гидридных ионов [1], возможно, тоже является результатом такого влияния концентрации. На остальных катализаторах, представленных в табл. 17, наблюдается распределение углеводородов, согласующееся с карбонийионным механизмом, но несколько изменяющееся в зависимости от природы катализатора и условий проведения реакции. [c.71]

    Из приведенного выше обсуждения следует, что цепной механизм требует, чтобы при алкилировании изобутана бутеном-1 и бутеном-2 получались соответственно существенно отличные продукты. Первый из них должен давать в качестве главных продуктов диметилгексаны, а второй — триметилпентаны. Это, действительно, доказано применением хлористого алюминия (в частности, модифицированного для подавления побочных реакций) как катализатора [14г]. Продукт алкилирования бутеном-1 в присутствии монометанолата хлористого алюминия содержал около 60% (вес.) диметилгексанов и 10% триметилпентанов, тогда как продукт из бутена-2 содержал 65% триметилпентанов и только 4% диметилгексанов. Различие в составе было очевидным также по октановым числам бензинов с концом кипения 125°. Бензин, полученный из бутена-1, имел по американскому стандарту октановое число, равное только 76,1, а полученный из бутена-2—-94,1. [c.133]

    Описаны новые многокомпонентные каталитические системы, их структура, методы приготовления и модифицирования. Проведен анализ природы активных форм, образующихся при адсорбции компонентов реакции на поверхности катализатора. Цаны стадийные схемы гетерогеннокаталитических процессов окисления углеводородов и обсуждаются новые представления о механизме этих реакций. Рассмотрены природа активной поверхности катализаторов и пути повышения эффективности их действия на отдельные реакции. Описаны основные кинетические закономерности окисления и окислительного ам-ионолиза олефиновых и ароматических углеводородов. Разобраны закономерности избирательности окислительных процес- ов и приведено описание некоторых промышленных процессов. [c.2]

    В настоящей работе изучено влияние донорно-акцепторного модифицирования окисных катализаторов и проведено сопоставление кинетических закономерностей образования продуктов при низкотемпературном окислении кумола (70° С) в присутствии гомогенного инициатора (азо-бис-изобутиронитрил — АИБП) и окислов металлов (NiO, AgO), На основании полученных результатов предложен механизм зарождения радикалов на поверхности гетерогенного катализатора в условиях изучаемых жидкофазных реакций. [c.197]

    Механизм действия промоторов, коактиваторов, носителей и т. д. тесно связан с механизмом каталитического действия. Поэтому разные теории катализа по-разному объясняют эти явления. Например, модифицирование контактов оригинально объясняет электронная теория Ф. Ф. Волькенштейн). Каталитический процесс рассматривается как донорно-акцепторный, причем в зависимости от условий лимитирующей стадией может быть либо отдача, либо прием электронов катализатором. Добавление донорной примеси к контакту будет ускорять акцепторный процесс. Если он лимитирующий, то произойдет ускорение реакции (промотирование). Дальнейшее введение той же примеси ускоряет акцепторный процесс настолько, что он перестает быть лимитирующим, и примесь, замедляя донор-ный процесс, подавляет реакцию (отравление). Наблюдается параллелизм действия добавок на электронные и каталитические свойства веществ. [c.165]

    При модифицировании Р1/3102 рением происходит возрастание удельной активности платины в реакции дегидрирования циклогексана [32]. По данным РФЭ-спектров, энергия связи уровня Р1 4/7/2 в илатинорение-вом катализаторе составляет 72 эВ, что на 0,5 эВ больше, чем для образца Р1/5Ю2, и вызвано частичным переносом электронной плотности с платины на низковалентные ионы рения. Можно полагать, что в данном случае или реализуется секстетный механизм, или скорость дегидрирования промежуточных продуктов на поверхности контакта намного выше скорости их десорбции в газовую фазу. [c.10]

    С позиций электронной теории модифицирования полупроводниковых катализаторов, механизм действия промотирующей добавки в данном случае может быть объяснен тем, что одновалентные катионы щелочных металлов, внедряясь в решетку окислов изучаемых нами катализаторов,создают оптимальную концентрацию свободных электронов, принимающих участие в осуществлении реакции декарбо-ннлирования фурфурола. При оптимальной концентрации электронов в поверхностном слое полупроводника эта реакция протекает с меньшей энергией активации, а следовательно, и при более низкой температуре. Это обусловливает как уменьшение потерь фурфурола от пиролиза, так и зависящие от него зауглеро-живание катализатора и увеличение активного периода катализатора. [c.258]

    Учитывая возможность получения сополимеров ММА и ВА и других кислородсодержащих мономеров с этиленом, пропиленом, стиролом или диенами [909, 911, 912], авторы ряда работ [909, 911 ] высказали предположение о том, что эти мономеры могут полимеризоваться и по анионно-координационному механизму. Карбонилсодержащие мономеры при сополимеризации с этиленом в присутствии упоминавшихся катализаторов принимают участие в реакциях обрыва цепи, вследствие чего молекулярный вес образующихся продуктов существенно снижается [912]. Выбор каталитической системы и условий осуществления процесса позволяет получать сополимеры этилена с ММА и ВА практически любого состава [912—916 ]. В присутствии различных каталитических систем получены сополимеры ММА, ВА, этилакрилата, виниловых эфиров не только с этиленом, но и с пропиленом, а также модифицированные ММА и ВА этилен-пропилен-диено-вые сополимеры [914, 916] (табл. 17). [c.178]

    Нужно заметить, что известны и гомогенные реакции синтеза нитрилов. В одном из таких процессов окислителем и одновременно донором азота служит равновесная газовая смесь, получаемая окислением аммиака кислородом на платино-родиевом сплаве или на катализаторах из окислов тяжелых металлов (железо, кобальт, молибден), модифицированных, окислами висмута [163]. По выходе из контактного аппарата газовый поток, содержащий азотистую кислоту, смешивают с лропиленом и пропускают через полую трубку при 470— 530 °С. Степень конверсии пропилена составляет 40%. Главным продуктом является акрилонитрил селективность его образования достигает 88 /о-В сходных условиях изобутилен -превращается в метакрилонитрил (степень конверсии 29%, селективность 85%), о-ксилол в о-фталодинитрил (89 и 91%), а-пиколин в 2-цианпиридин (54 и 80%)- Во всех случаях в небольших количествах получаются ненасыщенные альдегиды, H N, СО и СОг. Предлагается следующий механизм образования нитрилов  [c.152]

    Более глубокому анализу полученных данных в основном препятствует еще недостаточно ясное понимание механизма самой обменной реакции из-за ряда осложняющих эффектов. По этой причине мы воздерживаемся от сравнения кажущихся энергий активации на модифицированных и немоди-фицированных катализаторах, хотя в них и обнаруживается определенная закономерность постепенный рост от 6,3 ккал/жоль для образцов, содержащих окись галлия, до максимального значения на катализаторе с окисью лития, а именно [c.67]

    Эта задача связана с изучением детального механизма каталитических реакций, с получением данных, характеризующих каталитический комплекс — его состав, конфигурацию, энергйю образования и разложения, с изучением свойств, смешанных, промотированных, модифицированных и хелатных катализаторов на основе использования новых современных методов исследования. [c.430]


Библиография для Механизмы реакций модифицирования катализатора: [c.229]   
Смотреть страницы где упоминается термин Механизмы реакций модифицирования катализатора: [c.23]    [c.20]    [c.177]    [c.103]    [c.103]    [c.254]    [c.244]    [c.205]    [c.260]    [c.260]    [c.47]    [c.260]   
Окись этилена (1967) -- [ c.219 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы и механизм реакции

Катализаторы механизм



© 2025 chem21.info Реклама на сайте