Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генетическая генная инженерия методология

    Генно-инженерные исследования вносят уникальный вклад в изучение структурно-функ-циональной организации геномов различных организмов. Методология генетической инженерии постоянно совершенствуется, и все больше исследователей используют ее при решении самых разных задач биологической науки. [c.7]

    Все рассмотренные выше методы селекции продуцентов биологически активных веществ сегодня, в период интенсивного развития методов генной инженерии, называют традиционными методами. Эти методы в прошедшие 30 лет в огромной мере содействовали созданию микробиологической промышленности антибиотиков, аминокислот, ферментов, витаминов и других практически важных веществ. Исчерпали ли традиционные методы свои возможности Нам кажется, думать так преждевременно, как и надеяться на то, что генная инженерия в ближайшее время сможет быть применена для создания и улучшения обширного круга принадлежащих к разным таксономическим группам продуцентов, которыми располагает сейчас микробиологическая промышленность. Даже более реальная возможность использовать иа основе генноинженерных методов в качестве продуцентов микроорганизмы, для которых эти методы наиболее отработаны, например E sheri hia oli, едва ли удовлетворит промышленность числом продуктов микробного синтеза. В связи с этим очень важно для старых перспективных в промышленном отношении микроорганизмов, помимо совершенствования методов отбора нужного типа мутантов, развивать методы генетического обмена на основе слияния протопластов, трансдукции, трансформации хромосомной и плазмидной ДНК, которые расширяют возможности традиционных методов селекции. Вместе с тем у промышленных микроорганизмов все шире проводится поиск плазмид и предпринимаются попытки их использования в качестве векторов при переносе генетического материала, его клонировании и амплификации. Эти исследования важны для понимания генетического контроля сложных процессов синтеза, таких, иапример, как синтез антибиотиков, для выявления узких мест в биосинтезе многих других продуктов. Одновременно они приближают промышленные микроорганизмы к объектам генной инженерии. Методология генной инженерии постоянно совершенствуется и расширяет свои возможности. В таком успешном встречном развитии разных методов и их слиянии на все большем числе продуцентов можно представить себе ближайшее будущее селекции микроорганизмов, призванной обеспечить промышленность высокопродуктивными штаммами. [c.95]


    Вопросами совершенствования промышленных микроорганизмов традиционно занимаются микробиологи-селекционеры. Слово селекция (от лат. 5е1ес11о) означает отбор. Действительно, на протяжении длительного времени и в наши дни для недостаточно изученных с точки зрения генетики микроорганизмов единственным способом их улучшения является индуцированный мутагенез и ступенчатый отбор лучших вариантов (штаммов). Метод чрезвычайно трудоемок, так как отбор, как правило, проводится без детального знания путей биосинтеза. Селекционные работы такого рода могут занимать многие годы. Тем не менее практические результаты часто бывают очень значительными. Так, многолетняя селекция штаммов-продуцентов пенициллина позволила поднять активность от 100 до 40 000 ед/мл. Задача создания высокопродуктивных штаммов намного упрощается, если экспериментатор имеет достаточно знаний о путях биосинтеза того или иного метаболита и имеются способы генетического обмена у исследуемого микроорганизма, позволяющие собрать в одном штамме все полезные мутации и элиминировать все вредные. Развитие методологии генной инженерии, дающей [c.7]

    Создание высокоактивных штаммов с заданными свойствами во многом зависит от уровня знаний об организации генома и регуляции метаболизма микробной клетки. Для Е. соИ известны молекулярные механизмы репликации ДНК, транскрипции и трансляции, регуляции активности разных генов, лучше всего разработаны приемы генетического конструирования in vivo и in vitro. Именно поэтому первые работы по созданию промышленных штаммов микроорганизмов современными методами выполнены на этом микроорганизме. Распространение методологии генной инженерии на другие объекты требует дополнительных исследований. Как уже было показано, здесь достигнуты значительные успехи — сконструированы удобные векторы для псевдомонад, бацилл, актиномицетов и дрожжей. На этой основе будут созданы и уже создаются новые высокоактивные штаммы для промышленности. [c.180]

    Следует отметить, что исследования систем RM II типа методами генанализа являются немногочисленными. Это вполне объяснимо, учитывая тот факт, что подавляющее большинство продуцентов рестриктаз относятся к таксонам, которые пока недоступны для применения генетических методов исследования. Поэтому в этом случае единственным выходом из создавшейся ситуации является применение молекулярно-генетического метода — метода генной инженерии. Учитывая большие потенциальные возможности этой методологии, в последнее время она стала основным подходом при исследовании таких вопросов как структура и структурная организация, а также регуляция экспрессии генов гт. Большой интерес представляют данные о первичной структуре, наличие которых способствует решению таких фундаментальных задач, как механизмы высокоспецифического белок-нуклеинового взаимодействия и эволюции генов рестрикции-модификации. В прикладном аспекте клонирование генов гт и исследование их структуры является базой для создания высокоэффективных продуцентов дефицитных ферментов. [c.101]


    Экспрессия генов интерферонов в клетках Е. соИ. Для получения больших количеств гомогенных препаратов интерферона, необходимых как для широкого клинического использования, так и для исследовательских целей, предприняты многочисленные и успешные попытки создания штаммов-продуцентов на базе различных микроорганизмов. Наиболее обстоятельные работы осуществлены на Е. соН, что связано с систематической разработкой методологии генетической инженерии на основе этого вида бактерий. [c.193]

    Генетическая инженерия представляет собой удивительное явление в науке, когда разработка новой методологии дает мощный импульс развитию нашего понимания окружающей природы, ее сокровенных глубин. Бурному прогрессу генетической инженерии способствовало то, что уже в начале 1970-х гг., сразу после первых, еще робких экспериментов по рекомбинащ И in vitro негомологичных молекул ДНК, научной общественностью была осознана огромная важность и перспективность данной методологии. Это привлекло к ней широкие крути биохимиков, биологов, химиков и исследователей ряда других специальностей. Генно-инженерные эксперименты, выполненные в лабораториях разных стран, привели к такому фейерверку открытий, какого биологическая наука до тех пор не знала. В огромном потоке публикаций по генетической инженерии регулярно появляются работы, восхищающие дерзостью замысла и элегантностью методики. [c.7]

    В классической генетике хорошо известен так называемый эффект дозы гена, заключающийся в том, что увеличение в геноме какого-либо организма количества копий определенного гена вызывает пропорциональное повышение уровня его белкового продукта. С появлением методологии генетической инженерии использование эффекта дозы гена стало первым шагом к повышению выхода белковых продуктов клонируемых генов. Высокая доза гена достигается благодаря использованию многоко-пийных векторов, создаваемых для клеток Е. соИ на основе ДНК фагов и плазмид. [c.139]


Смотреть страницы где упоминается термин Генетическая генная инженерия методология: [c.301]    [c.53]    [c.206]    [c.233]    [c.14]   
Современные методы создания промышленных штаммов микроорганизмов (1988) -- [ c.7 , c.123 , c.133 , c.134 , c.138 , c.175 , c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Генная инженерия



© 2025 chem21.info Реклама на сайте