Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение больших количеств белковых продуктов

    Всестороннего развития животноводства, повышения его продуктивности и эффективности невозможно достичь без соответствующего улучшения кормовой базы путем создания полноценных кормовых продуктов, сбалансированных по аминокислотному сосгаву. В существующих кормовых рационах далеко не всегда имеется необходимое количество белка, аминокислот и витаминов, поэтому необходимо введение их п корм в виде тех или иных препаратов. Большое внимание исследователей привлекает вопрос получения кормовых белковых продуктов на основе растительного сырья или отходов его переработки, а также отходов пищевых производств. [c.151]


    Другой способ использования растений в качестве источника энергии — это превращение растительных продуктов в спирт. Практически любой растительный материал ферментативным или химическим путем можно разложить до простых сахаров, а сбраживая эти сахара при помощи дрожжей, можно получить этиловый спирт. Таким способом можно превращать в спирт излишки зерна, сахарного тростника, стебли кукурузы, древесные отходы, водоросли и даже отбросы, содержащие большие количества растительного материала. При этом часто в качестве побочного продукта получается богатая белком дрожжевая масса, которую вместе с неперебродившим растительным, материалом можно использовать на корм скоту. Полученный спирт можно смешать с бензином в соотношении 1 9 или даже 1 4 этой смесью ( газохол или бензоспирт) можно заправлять обычные двигатели внутреннего сгорания, произведя в них небольшие изменения. Используя таким образом растительный материал, который в противном случае пошел бы на выброс, можно существенным образом компенсировать наблюдающуюся нехватку нефти. Вряд ли, однако, удастся добиться больших выгод, выращивая растительные культуры специально для производства спирта, так как нередко, чтобы вырастить культуру, приходится затратить на машины и на удобрения столько же энергии, сколько удастся получить из нее. [c.526]

    Семена арахиса содержат большое количество белков, хорошо усвояемых организмом человека. Поэтому значительная часть семян арахиса используется непосредственно в пищу или для приготовления разнообразных пищевых продуктов — в кондитерском и хлебопекарном производстве. Семена используют также для получения пищевого масла. [c.38]

    Электродиализ находит промышленное применение. Так, этим методом удаляют соли из молочной сыворотки. Очищенная от солей сыворотка, содержащая большое количество лактозы и белков, используется для получения продуктов диетического питания. [c.186]

    Эти методы по сравнению с универсальными и играющими очень важную роль в биохимической практике методами аналитического гель-электрофореза имеют ограниченное применение, поэтому их описание будет кратким. Цель анализа конечного продукта, полученного в результате очистки, заключается в том, чтобы выяснить, содержит ли он один или большее число белков, и обнаружить в нем примеси, даже если они присутствуют в очень малых количествах. Гель-электрофорез позволяет выявить примесь какого-то одного компонента, составляющую 1% содержания основного компонента при условии их хорошего разделения. Однако бывают случаи, когда электрофорез не пригоден для исследования препарата. Это особенно относится к липопротеинам и другим связанным с мембранами белкам, которые при электрофорезе ведут себя необычно и нуждаются в определенных детергентах для поддержания их структурной целостности. В этих случаях, может быть, лучше использовать ультрацентрифугирование как основной или по крайней мере дополнительный метод, позволяющий получить информацию о гетерогенности данного препарата. В опытах по скоростной седиментации хорошо разделяются компоненты с сильно различающимися коэффициентами седиментации, однако если примесь по этому параметру сходна с основным компонентом и особенно если ее относительное количество слишком мало, то этот метод не дает надежных сведений о гетерогенности препарата. Метод седиментационного равновесия более пригоден для детектирования небольших количеств примеси по отклонению экспериментальных данных от теоретической прямой зависимости между логарифмом концентрации и квадратом расстояния от седиментирующей частицы до оси вращения. Однако это от- [c.330]


    Получение сырья перед выработкой из него растительных белковых продуктов требует особого внимания, которое не всегда полностью оправдано в отношении кормов или животных, но обязательно предполагает тщательность и хорошие условия выполнения операций при производстве пищевых продуктов для человека. В данном разделе в первую очередь будут рассмотрены технологии обработки по сухому методу, такие, как шелушение, измельчение (помол, дробление), просеивание и т. п., которые позволяют либо удалять малоценные, малоиспользуемые компоненты ввиду очень низкого содержания в них белков и большого количества клетчатки (обычно периферийные части семян), либо придать сырью такую форму, которая в наибольшей степени совместима с конечной обработкой (например, величина частиц, разрыв клеточных оболочек). [c.363]

    Питательные свойства белков можно оценить с помощью двух характеристик-хил< ческой ценности и биологической ценности. В первом случае после полного гидролиза определяют аминокислотный состав белка и сравнивают его со стандартом-белком, полученным из молока и яиц. При этом определяют потенциальную химическую ценность белка. Мерой биологической ценности белка служит величина, обратно пропорциональная количеству данного белкового продукта, которое необходимо для поддержания азотистого баланса у взрослого человека или экспериментального животного, т. е. состояния, при котором количество поступающего в организм азота точно соответствует его количеству, выводимому с мочой и калом. Если в данном белке есть все незаменимые аминокислоты в необходимых пропорциях и все они могут всасываться в кишечнике, то биологическая ценность такого-белка условно принимается равной 100. Для полностью перевариваемых белков с неполным содержанием аминокислот или с полным содержанием аминокислот, но не полностью перевариваемых это значение будет заведомо ниже. В соответствии с этим критерием биологическая ценность белка, в котором отсутствует хотя бы одна незаменимая аминокислота, будет равна нулю. Если белок характеризуется низкой биологической ценностью, он должен присутствовать в пище в очень больших количествах, чтобы обеспечить потребности организма в незаменимой аминокислоте, содержание которой в таком белке минимально. Остальные аминокислоты будут поступать в организм при этом в количествах, превышающих его потребности. Лишние аминокислоты будут подвергаться в печени дезаминированию и превращаться в гликоген или жир либо просто сгорать в качестве топлива. [c.824]

    Сушка распылением имеет ряд преимуществ. Процесс здесь происходит быстро, в течение 15—30 сек. Частицы в зоне повышенных температур имеют высокоразвитую поверхность, температура которой близка к температуре адиабатного испарения чистой жидкости. Благодаря этому высушенный продукт отличается хорошим качеством, в нем в меньшей степени происходят процессы денатурации белков (ферментов), процессы окисления, а также разрушения витаминов. Полученный порошок не требует дальнейшего измельчения, обладает высокой растворимостью. Меняя условия процесса, можно регулировать и изменять в желаемом направлении свойства готового продукта, например, величину частиц, объемный вес порошка, его конечную влажность и температуру. Сокращается и полностью механизируется производственный цикл. Из схемы можно исключить процессы фильтрования, размола, иногда центрифугирования. Повышается производительность труда, так как не требуется большого количества обслуживающего персонала. Легко осуществляется получение продукта, включающего несколько сухих компонентов, причем в заданных количественных соотношениях это делается добавлением [c.193]

    Способы получения требуемых последовательностей нуклеотидов из клонотек генов можно разделить на три группы. При использовании первой группы методов рекомбинантные бактерии или фаговые частицы исследуют на присутствие в них искомых последовательностей нуклеотидов путем последовательного перебора случайных клонов. При таком подходе, получившем название скрининга, творческие усилия исследователя направлены только на облегчение самого процесса анализа клонов, например, на его автоматизацию. Во втором случае, присутствие нужных последовательностей обнаруживают косвенно, по появлению в бактериальных клетках или фаговых лизатах бляшек продуктов экспрессии искомых генов - РНК, белков или ферментативной активности, т.е. определенного фенотипа, который отличает такие клоны от соседних, не содержащих соответствующих последовательностей. В этом случае исследователь среди большого количества суммарных клонов осуществляет выбор тех, которые резко отличаются от соседних по своему фенотипу, например, цвету колоний. При таком подходе производится выбор требуемого фенотипа среди большого числа других фенотипов. Реализация третьего подхода требует создания селективных условий, при которых преимущество в размножении получают те клоны, которые отвечают требованиям отбора, например, приобрели способность к росту на селективных питательных средах в присутствии антибиотика или в отсутствие аминокислоты в случае исходно ауксотрофного штамма. Последний подход, кроме своего необыкновенного изящества в замысле, демонстрирует самую высокую эффективность, так как позволяет в одно касание освободиться от всех нежелательных примесей в виде ненужных клонов. [c.162]


    Большое влияние, которое оказывают поверхности в каталитических процессах, происходящих в живых клетках, дает основание предполагать, что поверхности могут способствовать синтезу белков или, ПО крайней мере, конденсации аминокислот. Мар-стон [66] нашел, что смесь продуктов распада белка, деградированного действием трипсина, можно сконденсировать с образованием сложного продукта -добавкой сравнительно больших количеств трипсина. Этот синтез ускоряется при добавлении к реакционной смеси капелек жира, полученных из яичного желтка. [c.299]

    Изучение экспрессии клонированных генов во многом основано на способности таких генов нормально функционировать после введения их в культивируемые клетки млекопитающих. Эта способность помимо всего прочего позволяет получать редкие обычно белки в больших количествах, а также выделять белковые продукты новых генноинженерных конструкций. Получение таких белков в клетках млекопитающих имеет то преимущество, что обеспечивает правильную сборку вторичной структуры, нормальную модификацию и полную сохранность функциональной активности экспрессируемых белков — свойства, выгодно отличающие их от продуктов экспрессии тех же генов в бактериальных системах. [c.238]

    Полученные в Институте физики им. Л. В. Киренского СО АН СССР результаты физиологических и биохимических исследований послужили основанием для проведения работ, связанных с оценкой кормовой и пищевой ценности водородных бактерий. Для отработки технологии производства биологически важных продуктов из бактерий требуются большие количества биомассы. С целью получения биомассы разработана и пущена в эксплуатацию опытная экспериментальная установка для производства водородных бактерий с суточной производительностью до 8 кг сухого продукта с 60—70%-ным содержанием белка. Установка создана с учетом специфики культивирования водородных бактерий и соблюдения мер, обеспечивающих безопасность работы. [c.7]

    В прошлом, когда для беления применяли только щелочно-гипохлоритный способ, для получения нужной белизны хлопчатобумажных изделий требовалась только одна щелочная и одна гипохлоритная обработка. Для получения необходимой белизны льняных изделий требовалось четырехкратное последовательное повторение этих двух основных операций, причем белизна изделия после каждого цикла обработки постепенно увеличивалась. Соответственно изделие с белизной, приобретенной после первого цикла (оборота), обозначалось как Д белое, после двух циклов — /г белое (полубелое), после трех — белое и после четырех — V4 белое (полностью белое). Наличие в льняном волокне большего количества белков приводит к осложнению процесса подготовки льняного волокна при применении в качестве белителя гипохлорита. При действии гипохлорита на белки получаются хлорпроизводные этих соединений и продукты их распада (хлорамины), которые характеризуются удушливым запахом. [c.67]

    Взаимодействия между липидами и белками в растительных продуктах отличаются большим разнообразием, обусловленным множеством участвующих в них липидов и белков, а также многочисленностью сырьевых материалов и соответствующих технологических процессов. Все более активное выявление и изучение этих взаимодействий предопределяется, с одной стороны, разработкой новых технологий получения белков и, с другой стороны, развитием и совершенствованием как по качеству, так и по количеству методов и оборудования для идентификации и определения содержания липидов и анализа их взаимодействий с белками. Знания в этой области быстро расширяются цель настоящей главы состоит не в исчерпывающем рассмотрении всего вопроса, а в том, чтобы дать примеры или характерные сведения, которые могли бы служить руководством для читателей, желающих глубже вникнуть в эту проблему. [c.284]

    Пшеница. Пшеничная мука ввиду низкого содержания белков (10—15 %) и их специфических свойств малопригодна для изготовления изолята посредством солюбилизации. Действительно, в этом случае небольшое количество изолята приходится высушивать вместе с большим количеством попутного продукта. Кроме того, для перевода в растворимое состояние большой части белков пшеницы требуются повышенные pH, и если белки имеют тенденцию конгломерировать в нативном состоянии (клейковина), то после экстрагирования путем растворения они не обладают те ми же свойствами. Некоторые авторы преодолевают эти затруднения, беря за основу фракции, обогащенные белками (отруби, турбосепарированная мука), и предусматривают другие виды использования, такие, как пищевая клейковина (процесс получения которого описывается далее). В случае с отрубями такая технология дает возможность применить в питании человека те [c.464]

    Можно утверждать, что без катализа вообще была бы невозможна жизнь. Достаточно сказать, что лежащий в основе жизнедеятельности процесс ассимиляции двуокиси углерода хлорофиллом растений является фотохимическим и каталитическим процессом. Простейшие органические вещества, полученные в результате ассимиляции, претерпевают затем ряд сложных превращений. В химические функции живых клеток входит разложение и синтез белка, жиров, углеводов, синтез различных, часто весьма сложных молекул. Таким образом, клетка является своеобразной и весьма совершенной химической лабораторией, а если учесть, что все эти процессы каталитические — лабораторией каталитической. Катализаторами биологических процессов являются особые вещества —ферменты. Если сравнивать известные нам неорганические катализаторы с ферментами, то прежде всего поражает колоссальная каталитическая активность последних. Так, 1 моль фермента алкогольдегидрогеназа в 1 сек при комнатной температуре превращает 720 моль спирта в уксусный альдегид, в то время как промышленные катализаторы того же процесса (в частности, мeдь)J при 200° С в 1 сек превращают не больше 0,1 — 1 моль на один грамм-атом катализатора. Или, например, 1 моль фермента каталазы при 0°С разлагает в одну секунду 200 000 моль перекиси водорода. Наиболее же активные неорганические катализаторы (платиновая чернь) при 20° С разлагают 10—80 моль перекиси в 1 сек на одном грамм-атоме катализатора. Приведенные примеры показывают, что природные биологические катализаторы во много раз превосходят по активности синтетические неорганические катализаторы. Высокая специфичность и направленность действия, а также способность перерабатывать огромное количество молекул субстрата за короткое время при температуре существования живого организма и позволяет ферментам в достаточном количестве давать необходимые для жизнедеятельности соединения или уничтожать накапливающиеся в процессе жизнедеятельности бесполезные, а иногда и вредные продукты. [c.274]

    В некоторых случаях для достижения высокой плотности культуры и получения больших количеств продукта достаточно проводить ферментацию в обычном периодическом режиме. В одном из экспериментов плазмиду, несушую ген гибридного белка, одним из компонентов которого был пептид инсулина В, помешали под контроль ф-цромотора Е. соИ и вводили в trp -штамм Е. oli] трансформированные клетки [c.363]

    Растения дают большое количество биомассы, а выращивание их не составляет труда, поэтому разумно было попытаться создать трансгенные растения, способные синтезировать коммерчески ценные белки и химикаты. В отличие от рекомбинантных бактерий, которых культивируют в больших биореакторах (при этом необходимы высококвалифицированный персонал и дорогостоящее оборудование), для выращивания сельскохозяйственных культур не нужно больших средств и квалифицированных рабочих. Основная проблема, которая может возникнуть при использовании растений в качестве биореакторов, будет связана с выделением продукта введенного гена из массы растительной ткани и сравнительной стоимостью производства нужного белка с помощью трансгенных растений и микроорганизмов. Уже созданы экспериментальные установки по получению с помощью растений моноклональных антител, функциональных фрагментов антител и полимера поли-Р-гидроксибутира-та, из которого можно изготавливать материал, подверженный биодеградации. [c.412]

    Трудности, с которыми можно столкнуться при наработке моноклональных антител, связаны с получением достаточного количества иммуногена и последующим скринингом сыворотки для выявления нужной иммунологической активности. Использование гиперэкспрессии гибридных белков может облегчить преодоление этих трудностей, поскольку дает возможность выделять большие количества белкового продукта с помощью электрофореза или хроматографии. При скрининге сыворотки и полученных затем гибридных клонов можно применять метод радноиммунного анализа (РИА, RTA) или метод твердофазного иммуноферментного анализа (ИФА, ELISA). [c.173]

    Исходно цель опытов с использованием рекомбинантных ДНК состояла в получении важных с медицинской и экономической точек зрения белков, например вакцин и межклеточных пептидных посредников (инсулина, гормона роста и оксигоцина). Идея заключалась в клонировании гена, кодирующего данный полипептид, встраивании его в плазмиду, которая реплицируется в Е. соИ таким образом, чтобы промотор Е. соИ регулировал транскрипцию, а затем в синтезе на рибосомах Е. соИ больших количеств нужного белка. Почему эта довольно прямолинейная схема оказалась сложнее, чем вначале предполагалось (разд. 7.8) Во-первых, в большинстве эукариотических генов имеются интроны, а в генах Е. соИ их нет у бактерий отсутствует механизм сплайсинга, и поэтому невозможно получить соответствующую данному эукариотическому гену мРНК. Во-вторых, из первичных продуктов трансляции многих эукариотических генов, в частности из предшественников полипептидных гормонов, может образоваться активный генный продукт лишь в результате специфического посттрансляционного процессинга, который в клетках Е. соИ не осуществляется. Наконец, успешному получению больших количеств многих эукариотических белков мешает их токсичность для бактериальных клеток, деградация бактериальными протеазами и нерастворимость в цитоплазме бактериальной клетки. [c.359]

    Мочевина НаЫСОЫНг выделяется с мочой как основной азотсодержащий конечный продукт метаболизма белков. Она синтезируется в больших количествах в промышленном масштабе и находит применение как удобрение, в качестве сырья для получения мочевиноформальдегидных смол и в фармацевтической промышленности. [c.876]

    Приходится удовлетвориться продуктом транскрипции — кДНК. Его можно продуцировать в больших количествах при росте клона и секвенировать по методу Максама — Гилберта или по методу Сенгера. Из нуклеотидной последовательности можно вывести аминокислотную последовательность. Конечно, первичная структура искомого белка, полученная таким путем, [c.370]

    Метод изотопного разбавления (Фостер и Риттенберг, 1940 г.) основывается на следующем принципе в смесь аминокислот, полученную гидролизом известного количества белка, вводят некоторое количество определенной аминокислоты, содержащей изотоп или S ) и выделяют из смеси соответствующую аминокислоту в чистом В1вде (либо как таковую, либо в виде производного). Соотношение между мечено11 и немеченой аминокислотами в чистом выделенном продукте остается таким же, как и в исходной смсси (независимо от выхода чистого продукта). Определяя масс- спектрографически соотношетпге между меченой и немеченой аминокислотой в чистой выделенной аминокислоте и зная количество меченой аминокислоты, введенное в исходную смесь аминокислот, можно вычислить количество немеченой аминокислоты в смеси. Этот метод трудоемок, так как он требует синтеза большого числа меченых аминокислот. [c.419]

    В ЭТОМ фрагменте углеводная цепь присоединена к остатку аспарагиновой кислоты. Связь Туг — Asp, входящая в состав недеградированного белка, количественно расщепляется проназой-Р. Однако смесь гликопептидов, образующаяся при расщеплении белка папаином [19J, содержит связь Туг — Asp, устойчивую к действию проназы-Р [12]. Выделение гликопептидов из яичного альбумина иллюстрирует упомянутые трудности. Обработка белка проназой-Р или последовательно пепсином и трипсином вместе с химо-трипсином дает продукты, которые еще содержат различные, но относительно большие количества лейцина и меньшие количества серина и треонина. Эти аминокислоты можно удалить действием карбоксипептидазы, однако только после предварительного замещения свободной аминогруппы карбобензоксирадикалом [12, 20]. Аналогичные проблемы возникают при получении гликопептидов из других белков и, по-видимому, могут быть решены аналогичным путем. [c.241]

    Необходимо остановиться на представлении о полноценности и неполноценности белков в питании. Для изучения свойств белков используются различные методы получения отдельных фракций белков из органов и тканей. Применяя фракционное осаждение, электрофорез и другие методы, из белкового комплекса, находящегося в тканях, выделяют отдельные фракции, например, глиадин (из белков пшеницы), или зеин (из белков кукурузы) и т. п. Эти фракции не содержат некоторых незаменимых аминокислот или содержат их в ничтожных количествах. Опыты с кормлением животных такими белками показали невозможность использовать их для поддержания азотистого равновесия, в связи с чем стали говорить о существовании неполноценных белков . Эти фракции белков действительно неполноценны как источники белкового питания. Однако ни человек, ни животные никогда не употребляют в пищу отдельные фракции белков, подобные зеину, эдестину и др., а едят пищевые продукты (кукурузу, пшеницу и т. п.). В природе не существует животных или растительных тканей, в которых полностью отсутствовали бы незаменимые аминокислоты. На основании аминокислотного состава суммарного белка данного пищевого продукта можно говорить лишь об его большей или меньшей биологической ценности (Б. И. Збарский). [c.310]

    Особые преимущества и.меет выделение рибонуклеиновых кислот из гомогенатов тканей млекопитающих, микроорганизмов и вирусов экстракцией фенолом и водой при комнатной температуре, так как при этом белки и дезоксирибонуклеиновые кислоты выпадают в осадок, активность рибонуклеазы подавляется и высокополимерные продукты могут быть получены с хорощими выходами [11—14]. Прямая экстракция дрожжей водным раствором фенола была применена для препаративного получения транспортных РНК [15]. В примененных условиях экстракции высокомолекулярный материал почти не экстрагировался. Комбинирование экстракции с быстрой очисткой РНК на анионитах ЭКТЕОЛА- [16] или ДЭАЭ-целлюлозе [17, 18] дает возможность получать относительно чистую транспортную нуклеиновую кислоту в больших количествах. [c.365]

    В отличие от многих ранее распространенных точек зрения в настоящее время известно, что обсуждаемая реакция совершенно неспецифична. Противоречивые объяснения, имевшиеся в ранних публикациях, были вновь обсуждены в серии исследований Френкель-Конрата с сотр. [151 — 155), причем этими авторами были рассмотрены и изучены типы реакций, которые имеют место при взаимодействии формальдегида с белками. Так, было показано [151 ], что при pH 3—7 и температуре 70° происходит взаимодействие альдегида с первичными аминными и первичными амидными группами белков, но при этом лишь в незначительной степени затрагиваются фенольные группы или пептидные связи основной цепи. Эти выводы были сделаны на основании опытов с производными белков, синтетическими полипептидами, а также с простыми модельными соединениями, содержащими максимальное или минимальное количество потенциально реакционноспособных групп. Полиглутамид, полученный из полиглутаминовой кислоты, как оказалось, связывает большее количество формальдегида (88 молекул формальдегида на 100 амидных остатков), чем любой из изученных белков. Однако полиглутаминовая кислота, полиглицин и полигексаметиленадипамид связывают менее одной молекулы формальдегида на 100 элементарных звеньев, из чего следует, что карбоксильная и пептидная или вторичная амидная группы не реагируют с формальдегидом в сколько-либо значительной степени. Белки, предварительно модифицированные реакцией с фенилизоцианатом или подвергнутые дезаминированию, проявляют пониженную способность к взаимодействию с формальдегидом. Продукты реакции в рассматриваемой работе анализировали на общее количество связанного формальдегида, а также на содержание свободных аминогрупп (по методу Ван-Сляйка), общее содержание групп основного характера и содержание первичных амидных групп. Проведение реакции при pH 3,5 и температуре 70° в течение 4 суток приводит к получению продуктов, содерн ащих максимальное количество связанного формальдегида, причем 50% от этого максимального количества формальдегида связывается с белком за 8 час, а 90% — за 24 час. Полиглутамин связывает 47 молекул формальдегида на 10 г при pH 3,4 и 31 молекулу при pH 6,7. Оказалось, что основные группы проявляют большее сродство к формальдегиду при увеличении pH. Так, изменение соотношения амидных групп и групп основного характера может в значительной [c.363]

    Фактически первым примером аутогенной регуляции явились данные, полученные при изучении гена, детерминирующего синтез белка 32 у фага Т4. Этот белок играет важную роль в процессах генетической рекомбинации, репарации и репликации ДНК, в которых его функция выражается благодаря его способности связываться с одноцепочечной ДНК. Доказательством того, что синтез белка гена р32 регулируется аутогенно, явился эффект нонсенс-мутации, ведущих к перепроизводству неактивного белка. Это означало, что в тех случаях, когда функция белка нарушена, он синтезируется в больших количествах. Этот эффект проявляется на уровне трансляции мРНК гена 32 является стабильной и сохраняется независимо от поведения белкового продукта. [c.204]

    В 1909 г. Байуотерс [5] провел работу по выделению серомукоида в больших количествах. Он показал, что это вещество можно осадить только при насыщении раствора сульфатом аммония или сульфатом цинка. Полученный препарат содержал 11,4-11,7% азота и 24,3% углеводов (в пересчете на глюкозу). Гексозамин был единственным углеводным компонентом, обнаруженным Байуотерсом. Он считал, что это вещество является продуктом соединения глюкозы с белком. Было показано, что серомукоид содержит 10% общего связанного сахара крови. [c.68]

    Имеются два общих подхода к осуществлению внутриклеточной экспрессии клонированных генов. Соответствующий ген может быть клонирован в одной рамке считывания с синтетическими или бактериальными кодирующими последовательностями и экспрессироваться с образованием гибридного белка. Другой способ — непосредственная экспрессия встроенного гена. Потребность в экспрессии эукариотических полипептидов в составе гибридных белков возникла, когда было обнаружено, что уровень экспрессии эукариотических белков в клетках Е. oli ограничивается по той причине, что они распознаются клеткой как чужеродные и разрушаются [9]. Это особенно наглядно проявилось в случае полипептидов небольшого размера. При сшивании эукариотического гена с бактериальным синтезировались гибридные продукты, которые накапливались в клетке в значительно больших количествах [10, 11]. Однако, если требуется получить эукариотический полипептид в чистом виде, возникает необходимость в методе, позволяющем правильно расщепить гибридный белок. С другой стороны, непосредственная экспрессия одного эукариотического гена дает возможность получить нужный белковый продукт. Однако первичные продукты трансляции несут на своем Ы-конце остаток метионина. В клетках Е. соН имеются ферменты, осуществляющие при необходимости эффективное отщепление метионина от природных белков однако в случае рекомбинантных белков эти ферменты работают не столь эффективно [1]. Таким образом, белки, полученные в результате прямой экспрессии эукариотического гена, могут содержать несвойственный природному белку N-концевой метионин. [c.98]

    Клонирование фрагментов генома, содержащих ОРС, в экспрессирующих векторах позволяет нарабатывать для иммунизации большие количества чистого белка. Это делает получение моноклональных антител к белкам, кодируемым последовательностями ОРС, стратегически простой, хотя и в некоторой степени трудоемкой задачей. Основные требования при подобной работе— наличие хорошей культуры клеток и использование высокочувствительного метода анализа, позволяющего отличать антитела к продуктам ОРС от антител, узнающих векторные фрагменты гибридного белка. Отлаживание такого метода— основное узкое место рассматриваемого подхода. После получения специфических моноклональных антител к продукту, кодируемому встроенным фрагментом, их можно использовать для выявления, количественного анализа и очистки белкового продукта ОРС. [c.180]

    Некоторые из белковых веществ имеют простое строение, так как они при расщеплении дают почти исключительно какую-нибудь одну аминокислоту. К таким белкам относится сальмин и клупеин, вещества, которые были получены Косселем из тестикул лосося и сельди, они дают 89 /о аргинина. Гистоны также содержат много аргинина, именно около 27 /о- Однако и преобладающем большинстве случаев белковые вещества при расщеплении превращаются в целый ряд аминокислот, причем относительные количества этих кислот различны для разных видов белка. Лейцин почти всегда количественно преобладает, напр., в гемоглобине, кератине и эластине только в фиброине и в клее его находится меньше в них встречается зато в большом количестве гликокол. Из двухосновных аминокислот большей частью в незначительных количествах встречается аспарагин в казеине довольно много глютамина. Тирозин представляет главный продукт распада фиброина наряду с аланином и гликоколом, Цистин важная составная часть кератина он может быть получен в количестве 8 /д из коровьей шерсти. Следующая таблица дает общий обзор продуктов распада белковых веществ цифры означают проценты  [c.332]

    Соковые и сточные воды практически не утилизируются. Сброс их кроме загрязнения биосферы влечет за собой потери 18% СВ картофеля, или до 4,6% его массы. Низкая концентрация и большое количество соковых вод в СССР считаются препятствием для их утилизации. Между тем в 1972 г. в Швеции осуществлено промышленное производство кормового белка из сточных вод, содержащих крахмал картофельной шелухи. Производительность установки 2000 т кормового белка в год. Этот способ позволил одновременно с получением ценного продукта проводить очистку ранее не используемых сточных вод (Eriksson, 1972). [c.23]

    Чтобы исключить сезонность производства пищевого белка, наряду с использованием отходов переработки картофеля изучена возможность выращивания базидиальных грибов на молочной сыворотке. Среднее содержание СВ в ней составляет 6, 5%, в том числе лактозы — 3,7%, белка — 0,8, жира —0,3, золы — 0,7, прочих веществ— 1,0%. В СССР сыворотка используется главным образом для получения лактозы, в хлебопекарном производстве и в продуктах диетического питания. Молочная сыворотка содержит большое количество различных минеральных веществ (Залашко, Залашко, 1976 Меу-rath, Bayer, 1979 Грачева и др., 1980), богата фосфором, кальцием, магнием, калием, т. е. теми основными элементами, которые необходимы для развития грибов. [c.180]

    Для рещения экологических проблем предложено использовать бактерии, ранее селекционированные для получения кормового белково-витаминного концентрата (БВК) [4]. Сами БВК, содержащие, наряду с углеводородокисляющими микроорганизмами, в значительном количестве биогенные элементы, оказывают благоприятное действие на биологические свойства почвы, нормализуют ее микробиологические и биохимические параметры, снижают остаточное содержание нефтепродуктов и токсичность почвы для растений, т.е. могут использоваться для восстановления плодородия [45]. В частности, БВК паприн — продукт крупнотоннажного биотехнологического производства — представляет собой биомассу дрожжей, выращенных на -алканах основную его часть составляют белки, липиды, полисахариды, нуклеиновые кислоты. К информации такого рода, безусловно, следует относиться с большой долей осторожности. [c.390]

    Большое значение для количественного учета витаминов имеют биологические методы. Принцип этих методов сводится к следующему. Животных (крыс, морских свинок, голубей и др.) переводят на искусственную безвитаминную диету и затем наблюдают, какое количество исследуемой пищи может предохранить животное от развития заболевания или вылечить животное от уже наступившего авитаминоза. Очевидно, при определении содержания в пиш,е того или иного витамина приходится составлять для каждого случая особые диеты. В состав любой диеты должны входить белки, углеводы, жиры, минеральные соли, вода и все витамины, за исключением того витамина, содержание которого в исследуемом пищевом продукте должно быть определено. Диета для получения авитаминоза А у крыс имеет, например, такой состав казеина 18%, крахмала 48%, свиного жира 38%, солей 4% и в качестве источника витаминов 0,4 г дрожжей в день. Животные, находящиеся на этой диете, получают все необходимые пищевые вещества и витамины, за исключением витамина А. Вследствие этого через несколько педель у животного обычно развивается авитаминоз А. При прибавлении исследуемого пищевого продукта к вышеуказанной диете крыса остается здоровой только в том случае, если прибавленный продукт содержит витамин А. [c.136]

    Получение определенных и воопроизводимых данных о молекулярном весе ДНК представляет собой очень трудную задачу по ряду причин. Прежде всего ее молекулярный вес очень велик и молекулы имеют форму тонкой нити кроме того, ДНК гетерогенна и имеет склонность к образованию агрегатов. К тому же при обычных методах работы ДНК легко деградирует на фрагменты меньшего молекулярного веса. Для некоторых препаратов ДНК характерен вес 7 10 . Если молекулы имеют структуру двойной опирали, то такому молекулярному весу соответствует длина 3,4 мк. Молекула ДНК такой длины содержит около 10 пар оснований, а ее спираль имеет около 10 витков. Исследования последних лет показывают, что ДНК с подобными характеристиками является, вероятно, также продуктом деградации нативной ДНК. Молекулярный вес ДНК Е. соН превосходит 10 , а ее длина равна нескольким сотням микрон поскольку суммарное количество ДНК в клетке лишь немногим больше того, которое входит в такую молекулу, можно думать, что вся ДНК клетки представляет собой одну-единственную молекулу. При столь больших молекулярных весах ко1рреляция физических свойств с молекулярным весом становится ненадежной. Если бы всю ДНК, содержащуюся в одной клетке млекопитающих, вытянуть в одну ниточку, то она имела бы длину около метра. Такого количества ДНК достаточно для кодирования Ю —10 различных белков, из которых состоит человеческий организм. Если выстроить в одну линию одну за другой молекулы ДНК всех клеток организма, то эта [c.317]


Смотреть страницы где упоминается термин Получение больших количеств белковых продуктов: [c.59]    [c.49]    [c.69]    [c.137]    [c.336]    [c.123]    [c.118]    [c.155]    [c.181]    [c.336]    [c.15]    [c.145]    [c.242]   
Смотреть главы в:

Молекулярная биотехнология принципы и применение -> Получение больших количеств белковых продуктов




ПОИСК





Смотрите так же термины и статьи:

Количество продукта



© 2025 chem21.info Реклама на сайте