Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплоемкость решеточная

    В металлах, вообще говоря, тепловое расширение определяется как тепловыми возбуждениями решётки (фононами), так и электронными возбуждениями. Электронный вклад в тепловое расширение по порядку величины соответствует вкладу электронной теплоёмкости Се в суммарную теплоёмкость металла. Поскольку в широком интервале температур электронная теплоёмкость значительно меньше решёточной, то в тепловом расширении металлов доминируют тепловые возбуждения решётки. Теплоёмкость Се сравнима по величине с решёточной только при очень низких температурах, ниже примерно 10 К, и здесь электронный вклад в расширение сравнивается по величине с фононным, но оба они становятся очень малыми. [c.69]


    Определённые из экспериментальных данных по теплоёмкости температуры Дебая для кристаллов изотопов гелия, водорода и неона существенно отклоняются от ожидаемой корневой зависимости от массы изотопа. Причиной этого, по-видимому, является значительный ангармонизм межатомного потенциала, приводящий к разному сдвигу частот нормальных колебаний у изотопов одного элемента. Так для водорода было найдено, что отношение в(Н2)/0о(О2) = 1,070 вместо ожидаемого в квазигармоническом приближении л/2 1,414. Для неона 0в( Ме)/0о( Не) = 1,023, а корень из отношения масс изотопов равен 1,049. В изотопическом эффекте в решёточной теплоёмкости лития и молибдена при низких температурах не было обнаружено аномалий. Однако анализ экспериментальных данных [126] по изобарической теплоёмкости изотопов лития при температурах от 80 К до 300 К, проведённый в работе [15], показывает, что изотопический эффект в высокотемпературной решёточной теплоёмкости не укладывается в рамки простого квазигармонического приближения ангармонизм, видимо, играет здесь важную роль. [c.75]

    Исследования теплоёмкости твёрдых смесей изотопов водорода [124] и лития [128] показали, что в пределах погрешности эксперимента решёточная теплоёмкость смесей может быть представлена как среднее от вкладов чистых изотопов. Такое поведение свойственно почти идеальным растворам. [c.75]

    Принцип работы таких детекторов основан на том, что теплоёмкость кристаллической решётки в соответствии с формулой Дебая пропорциональна четвёртой степени температуры. Спектр электронных состояний диэлектриков, полупроводников и сверхпроводников характеризуется наличием энергетической щели. При достаточно низких температурах Т, когда энергия тепловых флуктуаций къТ <С Д (где къ — постоянная Больцмана, А — ширина щели в спектре энергии электронных состояний), электронная теплоёмкость кристалла не возбуждается. Для диэлектриков это состояние достигается при температурах порядка сотен милликельвин (1 мК = 10 К), для полупроводников — десятков и для сверхпроводников — единиц милликельвин. Оставшаяся решёточная , фононная или дебаевская теплоёмкость идеального кристалла при сверхнизких температурах оказывается настолько малой, что кинетическая энергия ядра отдачи при единичном акте рассеяния частицы вызывает всплеск температуры всего макроскопического кристалла мишени, который превышает уровень термодинамических флуктуаций. Этот всплеск температуры регистрируется термометром и служит выходным сигналом детектора. Физические принципы и перспективы применения криогенных детекторов этого типа изложены в обзоре [69]. [c.42]


    Электропроводность металлов. Изотопические эффекты в электропроводности металлов возникают главным образом по двум причинам 1) из-за изменения фононного спектра при полном изотопическом замещении атомов решётки и 2) в результате появления динамических и статических возмущений электрического поля вблизи изотопической примеси в изотонически разупорядоченном металле. Изотопические эффекты в свойствах собственно электронной подсистемы металла (форма поверхности Ферми, закон дисперсии) как ожидается должны быть незаметными. Измерения теплоёмкости металлов Li [127] и Мо [129] при низких температурах, где электронная часть теплоёмкости значительно больше решёточной, не обнаружили изотопического эффекта в электронной теплоёмкости. Этот результат согласуется с тем, что электронный спектр металла и электрон-фононное взаимодействие в первом приближении не меняются с массой изотопа. [c.76]


Справочник по физико-техническим основам глубокого охлаждения (1963) -- [ c.38 , c.119 ]




ПОИСК







© 2025 chem21.info Реклама на сайте