Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплопроводность теплоизоляционных материалов

    Низкая теплопроводность. Теплоизоляционные материалы разделяются на четыре группы по величине [c.189]

    Из приведенных данных видно, что величина Я для различных материалов изменяется в широких пределах это в значительной мере определяет их назначение. Низкая теплопроводность теплоизоляционных материалов объясняется их пористой структурой, в ячейках которой заключен воздух, плохо проводящий тепло. Для большинства металле коэффициенты теплопроводности с возрастанием температуры уменьшаются, тогда как для газов они возрастают. [c.113]


    Эмпирические формулы для вычисления теплопроводности теплоизоляционных материалов в зависимости от температуры [c.344]

Рис. П2.1. Влияние температуры на теплопроводность теплоизоляционных материалов (данные заимствованы из литературных источников [4, 14 и 8] гл. 16) Рис. П2.1. <a href="/info/15368">Влияние температуры</a> на <a href="/info/110286">теплопроводность теплоизоляционных</a> материалов (данные заимствованы из литературных источников [4, 14 и 8] гл. 16)
    Коэффициент Ь для различных теплоизоляционных материалов имеет величину порядка (2,0ч-4,0) 10 1/град, т. е. при изменении температуры на 100°С коэффициент теплопроводности теплоизоляционных материалов изменяется от 20 до 40% [c.85]

    Измерение коэффициента теплопроводности теплоизоляционных материалов при низких температурах основано на определении массы испарившейся криогенной жидкости (например, жидкого кислорода или азота) в результате подвода тепла к образцу теплоизоляции. Этот способ используется для определения коэффициента теплопроводности. как при атмосферном давлении, так и в условиях вакуума [81—84]. [c.55]

    Коэффициент теплопроводности теплоизоляционных материалов возрастает с увеличением давления в большинстве случаев быстрее [19, 20, 123], чем это следует из уравнения (13). Авторы работы [123] пытаются объяснить это влиянием конвекции. Действительная причина заключается в сложной структуре изоляционных материалов, не дающей возможности описать перенос тепла в них газом при использовании лишь одного характеристического размера — среднего диаметра пор. Коэффициент теплопроводности зернистых теплоизоляционных материалов, зерна которых имеют пористую структуру, может быть вычислен по уравнению (30) с использованием уравнений (33) — (35). Более простую формулу, применимую к любым теплоизоляционным материалам, можно получить на основе следующих соображений. [c.91]

    Из табл. 10-6 следует, что в интервале температур от 30 до 75° С коэффициент теплопроводности теплоизоляционных материалов изменяется незначительно. При [c.440]

    Влиянием конвекции и лучеиспускания в процессе передачи теплоты через теплоизоляционный материал объясняется возрастание коэффициента теплопроводности к с повышением температуры. На это указывают и данные табл. 3.1, по которым можно судить и о том, что в крупных порах теплопроводность воздуха растет при повышении температуры значительно быстрее. Повышение температуры вызывает и рост радиационного теплообмена, поскольку излучение пропорционально четвертой степени абсолютной температуры. Однако, как следует из опытных данных, коэффициент теплопроводности теплоизоляционных материалов находится примерно в линейной зависимости от температуры, т. е. [c.64]


    Коэффициент Ь для различных материалов имеет величину (2- 4) 10 К , а потому теплопроводность теплоизоляционных материалов соответственно изменяется от 20 до 40% на каждые 100 К повышения или понижения температуры. Для низкотемпературных установок это свойство материалов оказывается весьма положительным. [c.64]

Рис. 224. Коэффициент теплопроводности теплоизоляционных материалов при средней температуре —85 °С в зависимости от давления Рис. 224. <a href="/info/1104096">Коэффициент теплопроводности теплоизоляционных</a> материалов при <a href="/info/14207">средней температуре</a> —85 °С в зависимости от давления
    Коэффициент теплопроводности теплоизоляционных материалов сильно зависит от их объемной массы, а также давления и температуры. На рис. 224 приведены кривые значений коэффи- [c.522]

    Коэффициент теплопроводности теплоизоляционных материалов сильно зависит от их объемной массы, а также давления и температуры. На рис. 10.1 приведены кривые, характеризующие коэффициенты теплопроводности некоторых изоляционных материалов . [c.511]

Рис. 32. Теплопроводность теплоизоляционных материалов Рис. 32. <a href="/info/110286">Теплопроводность теплоизоляционных</a> материалов
    Теплопроводность теплоизоляционных материалов в большой мере определяется соотношением между количеством воздуха (газа), находящегося внутри пор и имеющего достаточно низкий коэффициент теплопроводности (0,02 ккал) м-час-град), и количеством твердого вещества изоляции, коэффициент теплопроводности которого зависит от материала теплоизоляции. [c.38]

    Материалы для тепловой изоляции имеют пористое строение, благодаря чему обладают малой насыпной плотностью и низкой теплопроводностью. Теплоизоляционные материалы классифицируются (ГОСТ 16381—70) по структуре, форме, виду сырья, объемной массе, сжимаемости, теплопроводности. [c.35]

Рис. 47. Зависимость теплопроводности теплоизоляционных материалов от температуры. Рис. 47. <a href="/info/315255">Зависимость теплопроводности</a> теплоизоляционных материалов от температуры.
Рис. 357. Средний коэффициент теплопроводности теплоизоляционных материалов Рис. 357. <a href="/info/1806954">Средний коэффициент теплопроводности</a> теплоизоляционных материалов
    По величине теплопроводности теплоизоляционные материалы классифицируют следующим образом  [c.314]

    Величины расчетных коэффициентов теплопроводности теплоизоляционных материалов [c.78]

    Величина коэффициентов теплопроводности газов на порядок меньше теплопроводности жидкостей. Поэтому газы обладают самой низкой теплопроводностью из всех веществ. Низкий коэффициент теплопроводности теплоизоляционных материалов (диатомито вые земли, шлаковая вата, торф, пробка) обусловливается их пористостью. Поэтому тепловой поток в таких материалах является в основном процессом теплопередачи через воздух, заключенный в порах. Твердое вещество таких материалов не позволяет воздуху приходить в состояние движения от разности температур, а тем самым и предотвращает передачу дополнительного количества тепла конвективными токами. Закон Фурье для процессов теплопередачи весьма напоминат закон Ома для электрического тока. В этом можно легко убедиться, если уравнение (1-6) написать в следующей форме  [c.27]

    В 1960 г. И. И. Перелетов [120] разработал комплексный метод измерения температурной зависимости коэффициентов температуропроводности и теплопроводности теплоизоляционных материалов в режиме монотонного нагрева. И. И. Перелетов рассматривал температурное поле монотонно нагреваемого полого цилиндра, занолненного исследуемым веществом. Полый цилиндр играл роль оболочки тепломера и выполнялся из материала с известными теплофизическими свойствами. При решении задачи учитывалась нелинейность разогрева, а теплофизические свойства образца и оболочки принимались постоянными. В процессе нагрева измерялся перепад температуры на образце и на внешнем цилиндре. Метод измерения коэффициента температуропроводности совпадает с методом О. А. Краева, а метод измерения теплоемкости практически не отличался от методов диатермической оболочки Ю. П. Барского. К недостаткам метода следует отнести низкую точность определения теплофизических характеристик оболочки, трудность обеспечения равномерного потока на поверхности наружного цилиндра и сложность расчетных фор- [c.35]


    Представленные в этом разделе данные о теплопроводности некоторых материалов, обычно используемых в низкотемпературной аппаратуре, взяты главным образом из обзорной статьи Пауэлла и Блэнпайда. В разделе помещены также некоторые более поздние данные. Коэффициенты теплопроводности теплоизоляционных материалов можно найти в гл. 5, посвященной изоляции. [c.381]


Смотреть страницы где упоминается термин Теплопроводность теплоизоляционных материалов: [c.63]    [c.98]    [c.85]   
Справочник по физико-техническим основам глубокого охлаждения (1963) -- [ c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Теплоизоляционные материалы

Теплопроводность материалов



© 2025 chem21.info Реклама на сайте