Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оценка энергетических свойств топлив

    В 1975 г. Е. Фитцер [17] делает попытку охарактеризовать ресурсы и области использования тяжелых нефтяных остатков. Автор пытается оценить и количественные соотношения потребления нефтяных остатков в различных отраслях экономики и техники, в сопоставлении с общими их ресурсами. Основные аспекты работы — производство различных типов технологического углерода на основе высокотемпературной переработки нефтяных остатков, области применения и масштабы потребления технического углерода. Для оценки перспектив развития производства и областей технического применения сажи, кокса, графита, адсорбентов, автор считает необходимым предварительно получить надежную информацию но следующим позициям спецификация на сырье (нефтяные остатки) для производства различных видов технического углерода возможности модификации этого сырья с целью приведения их свойств в соответствие с требованиями спецификаций и стоимости спрос рынка и потребности в специальных видах технического углерода, вырабатываемого из нефтяных остатков экономические показатели — сопоставление стоимости получаемых изделий технического углерода с другими процессами переработки нефтяных остатков и капиталовложения в эти процессы. Не пытаясь дать общую картину развития производства технического углерода на базе переработки нефтяных остатков, автор утверждает, что главное направление использования нефтяных остатков должно быть тесно связано с развитием таких ведущих отраслей промышленности, как, например, алюминиевая, производство стали. Свое утверждение он обосновывает данными о перспективном потреблении кокса в этих отраслях в Западной Европе. Автор справедливо делает вывод, что на производство электродного кокса и пека идет лишь часть нефтяных остатков (не менее 25% от перерабатываемой нефти). Главными же направлениями использования этого нефтепродукта остается топливно-энергетическое потребление прямое потребление мазута как топлива, а также предварительная переработка но процессам гидрокрекинга, газо-фикации и использование в качестве исходного материала в про- [c.255]


    Плотность — один из наиболее общих показателей свойств топлив, предусмотренных стандартами различных стран или комплексами методов квалификационной оценки топлив. Плотность имеет значение и как физическая характеристика продукта, и в ряде случаев как эксплуатационный показатель при пересчете объема и массы топлив на местах производства, потребления, при транспортировании, при конструктивно-расчетных исследованиях, а также при оценке энергетических свойств топлива. По плотности можно ориентировочно судить и об углеводородном составе топлива, поскольку значения ее для углеводородов разных групп различны. [c.8]

    Действующие сегодня классификации рассматривают уголь в основном как энергетическое топливо, поэтому в них недостаточно отражены свойства, важные для процессов химико-тех-нологической переработки. В настоящее время во многих странах ведутся исследования по разработке методов однозначной оценки пригодности любого угля для различных направлений его технологического использования, в том числе и для переработки в моторные топлива. В Советском Союзе в последние годы завершена разработка такой единой классификации углей на основе их генетических и технологических параметров (ГОСТ 25543—82). По этой классификации петрографический состав угля выражается содержанием фю-зинизированных микрокомпонентов (20К). Стадия мета р-физма определяется по показателю отражения витринита (Л ), а степень восстановленности выражается комплексным показателем для бурых углей — по выходу смолы полукоксования, а для каменных углей — по выходу летучих веществ и спекаемости. Каждый из классификационных параметров отражает те или иные особенности вещественного состава и молекулярной структуры углей. [c.67]

    При оценке энергетических, т. е. тепловых, свойств топлива большое значение имеет его теплотворная способность. [c.11]

    При энергетическом использовании топлива определение его теплоты сгорания совершенно необходимо, поскольку без знания этой величины нельзя составить ясной характеристики горючего — наиболее важного его технического свойства какое количество тепла можно получить при его сжигании. Наоборот, при использовании ископаемого топлива для химической переработки в некоторых случаях величина теплоты сгорания не имеет большого значения и ее обычно не определяют. Например, угли, идущие на коксование, вне зависимости от их теплоты сгорания в результате процесса коксования образуют кокс с практически одинаковой теплотой сгорания. Таким образом, подбор углей для коксования по их теплоте сгорания не имеет практического значения. Оценка кокса по теплоте сгорания также обычно не производится, поскольку она обычно мало колеблется, а также потому, что характеристика качества кокса по его теплоте сгорания имеет второстепенное значение по сравнению с другими показателями его качества. [c.24]


    Развитие науки химии и происхождения твердых горючих ископаемых в нашей стране можно разделить на дореволюционный и послереволюционный периоды. В дореволюционный период относительно широко угли изучались только с точки зрения оценки их как энергетического топлива. Вопросам глубокого химического изучения углей практически совсем не уделялось внимания. Работы, связанные с происхождением углей, сосредоточивались главным образом у геологов и палеоботаников. После Великой Октябрьской социалистической революции произошли коренные изменения в развитии науки и вопросы глубокого химического изучения твердых горючих ископаемых стали одними из самых важных. В стране были созданы научно-исследовательские институты и лаборатории по изучению и использованию твердых горючих ископаемых. Как и во многих других отраслях науки и техники, в углехимии советским ученым пришлось начать с самого начала — с разработки стандартных методов технического анализа. Несмотря на это, за очень короткий срок советская углехимия сделала огромные успехи. Советская наука химии горючих ископаемых вО многих отношениях опередила науку капиталистических стран как в теоретических, так и в народнохозяйственных вопросах. Это можно иллюстрировать следующими примерами. В области изучения угольных месторождений создание геолого-углехимическон карты Донецкого бассейна является уникальной работой, не имеющей себе подобной ни в одной другой стране. В меньшем масштабе и с менее детальным исследованием разработана геолого-углехимическая карта Прокопьевско-Киселевского района Кузбасса. Обе работы дают возможность делать прогнозы свойств углей иа неразведанных еще площадях. Химия ископаемых сапропелитов, можно считать, целиком разработана в Советском Союзе. Вопросы составления многокомпонентных уголь 1ЫХ шихт для коксования проработаны гораздо глубл<е, чем в других странах, и на сегодня советская наука и техника яв.тяются ведущими в этой области. [c.9]

    В учебном пособии даны систематизированные сведения по физико-химическим, энергетическим и эксплуатационным свойствам топлив и рабочих тел, методика расчета основных показателей топлив, основы метода оценки и выбора топлив и краткая характеристика условий эксплуатации двигателей, работающих на жидком или твердом химическом топливе, а также ядерно-ракетных двигателей, использующих широкий круг веществ в качестве рабочего тела и делящиеся материалы в качестве источника энергии. [c.2]

    Ископаемые угли обладают определенными физическими свойствами, которые имеют немаловажное значение при оценке угля как энергетического топлива и как сырья для технологической переработки. [c.141]


Смотреть страницы где упоминается термин Оценка энергетических свойств топлив: [c.98]   
Смотреть главы в:

Лабораторные методы оценки свойств моторных и реактивных топлив -> Оценка энергетических свойств топлив




ПОИСК





Смотрите так же термины и статьи:

Оценка свойства

Энергетические свойства



© 2024 chem21.info Реклама на сайте