Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические источники электрической энергии Электродные потенциалы

    Приложение термодинамики к электрохимическим системам позволяет установить связь между электрической энергией электрохимической системы и изменением химической энергии протекающих в ней токообразующих химических реакций. На основании этой связи можно ввести понятия обратимая э. д. с. , равновесный электродный потенциал и дать отвечающие опыту уравнения для их концентрационной зависимости, а также успешно решить многие проблемы электрохимического равновесия. Термодинамика правильно определяет химическую энергию токообразующей реакции как источник электрической энергии электрохимических систем. Однако термодинамика, являясь наукой о наиболее общих энергетических закономерностях, не может дать представления [c.198]


    Химические и концентрационные элементы. Химический источник тока, или гальванический элемент, состоит в основном из двух электродов, которые сочетаются таким образом, что при соединении их посредством какого-нибудь проводника, например металлической проволоки, в получившейся цепи возникает электрический ток. Каждый электрод состоит из соприкасающихся друг с другом электронного и ионного проводников (ср. стр. 17). На границе раздела между этими двумя фазами имеется разность потенциалов, называемая электродным потенциалом ъля электродным скачком потенциала. Если в элементе нет никаких других разностей потенциалов, то его э. д. с. принимается равной алгебраической сумме обои электродных потенциалов. Когда элемент работает, на каждом электроде происходит электрохимическая реакция энергия этих реакций является источником электрической энергии цепи. Во многих элементах происходит суммарное химическое превращение, которое можно определить, если учесть все процессы, идущие в этих цепях такие элементы называют химическими элементами в отличие от элементов, в которых суммарная химическая реакция не происходит. В элементах последнего типа реакция, идущая на одном из электродов, прямо противоположна реакции, которая идет на другом. Темпе менее из-за [c.256]

    Если в правильно разомкнутой электрохимической цепи (см. рис. VI.2,а) на всех трех фазовых границах М1—Мг, Мг—раствор и раствор — М] имеет место электронное равновесие, определяемое равенством электрохимических потенциалов электрона в этих фазах, то на первый взгляд кажется непонятным, за счет чего возникает ЭДС цепи, равная разности в двух частях одного и того же металла Мь Анализ этой проблемы показывает, что электрохимические потенциалы электрона в двух областях одного и того же раствора вблизи металла М1 и вблизи металла М2 — не одинаковы. В самом деле, выше было показано, что равновесная концентрация электронов в абсолютно чистой воде у поверхности медного электрода равна 9,36моль/л. Аналогичный расчет показывает, что в абсолютно чистой воде у поверхности цинкового электрода [е ] =2,31 10 моль/л. Следовательно, в воде между двумя электродами имеет место градиент концентрации гидратированных электронов. Как следует из уравнения (IV.34), градиент концентрации сольватированных электронов возникает в любом растворе, если только не равны друг другу электродные потенциалы двух металлов. Поэтому, строго говоря, разомкнутая электрохимическая цепь, ЭДС которой не равна нулю, не является равновесной даже при наличии равновесия на всех ее фазовых границах. Чтобы строго определить равновесную электрохимическую цепь, кроме условия электрохимического равновесия на каждой фазовой границе дополнительно указывают, что ЭДС цепи скомпенсирована разностью потенциалов от внешнего источника тока (см. с. 116). При подключении этой внешней разности потенциалов происходит компенсация электрическим полем градиента химического потенциала электронов в электролите, так что и в растворе при этом Ар,1,=0. Отсюда следует, что ЭДС электрохимической цепи можно представить как разность величин вблизи двух электродов и ввести определение отдельного электродного потенциала как реальной свободной энергии сольватации электрона (выраженной в эВ) при электронном равновесии электрода с раствором. [c.138]



Смотреть страницы где упоминается термин Химические источники электрической энергии Электродные потенциалы: [c.157]    [c.212]    [c.202]    [c.217]    [c.4]    [c.270]   
Смотреть главы в:

Общая химия 2000 -> Химические источники электрической энергии Электродные потенциалы




ПОИСК





Смотрите так же термины и статьи:

Потенциал химическии

Потенциал химический

Потенциал электродный потенциал

Химическая энергия

Химический потенция

Электрическая энергия

Электрический потенциал

Электрический ток, источники

Электродный потенциал

Энергия потенциала



© 2025 chem21.info Реклама на сайте