Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Источники электрической энергии

    Химические источники электрической энергии [c.275]

    ХИМИЧЕСКИЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ. [c.176]

    Курс Технология электрохимических производств , читаемый на соответствующих кафедрах технологических, химико-технологических и политехнических вузов, включает ряд разделов, в которых рассматриваются процессы электролиза водных растворов без выделения и с выделением металлов, электрохимического синтеза неорганических и органических веществ, электролиза расплавов, а также основы производства источников электрической энергии. Естественно, что подробное изложение этих вопросов в книге ограниченного объема невозможно, да и не требуется по учебному плану. Задачей курса является общее ознакомление студентов с процессами превращения химической энергии в электрическую (в производстве химических источников тока) и с возможными путями использования электролиза для получения различных продуктов. [c.7]


    Важное место занимает промышленность химических источников тока. Химические источники тока явились первыми источниками электрической энергии. После изобретения динамомашины они временно отошли на второй план. Однако в настоящее время интерес к химическим источникам тока снова возрос, что связано с решением задач, поставленных развитием электроники, исследованиями космоса, необходимостью совершенствования транспортных средств и т. п. [c.12]

    Следовательно, источником электрической энергии в данной концентрационной цепи является перенос /+ молей хлорида водорода от более концентрированного раствора к менее концентрированному. Из уравнений (7.7) и (9.7) получается следующее выражение для э.д.с. анионной концентрационной цепи второго рода  [c.199]

    На разработку практически действующих топливных элементов затрачиваются большие исследовательские усилия. Одной из возникающих при этом проблем является высокая температура, при которой работает большинство подобных элементов, что не только способствует рассеянию энергии, но и ускоряет коррозию частей гальванического элемента. Разработан низкотемпературный топливный элемент, в котором используется Н2, но пока что этот топливный элемент слишком дорог для широкого потребления. Однако он находит применение в особых случаях, например в космических аппаратах. Так, топливный элемент на основе Н2—О 2 служил в качестве главного источника электрической энергии на космических кораблях Апполон , летавших на Луну. Масса топливного элемента, обеспечивавшего корабль энергией в течение 11-дневного полета, составляла приблизительно 250 кг. Если бы для такой цели использовался обычный генератор электрической энергии, его масса должна была бы составлять несколько тонн. [c.220]

    Некоторые особые цепи варианты использования химических цепей как источников электрической энергии [c.207]

    Если окислительно-восстановительную реакцию осуществить так, чтобы процессы окисления и восстановления были пространственно разделены, и создать возможность перехода электронов от восстановителя к окислителю по проводнику (внешней цепи), то во внешней цепи возникнет направленное перемещение электронов —электрический ток. При этом энергия химической окислительно-восстановительной реакции превращается в электрическую энергию. Устройства, в которых происходит такое превращение, называются химическими источниками электрической энергии, или гальваническими элементами. [c.176]


    В принципе электрическую энергию может дать любая окислительно-восстановительная реакция. Однако число реакций, практически используемых в химических источниках электрической энергии, невелико. Это связано с тем, что не всякая окислительновосстановительная реакция позволяет создать гальванический элемент, обладающий технически ценными свойствами (высокая и практически постоянная э. д. с., возможность отбирания больших токов, длительная сохранность и др.). Кроме того, многие окислительно-восстановительные реакции требуют расхода дорогостоящих веществ. [c.278]

    Уже тогда было ясно, что электролиз является одним из наиболее перспективных методов производства многих продуктов. Однако широкое промышленное использование он получил несколько позже и главным образом после того, как в промышленности появились мощные источники электрической энергии постоянного тока — генераторы постоянного тока. [c.10]

    Для удовлетворения неуклонно растущих потребностей общества ведется постоянный поиск новых, более рентабельных и мощных источников электрической энергии. Однако выбор их весьма ограничен к настоящему времени основная часть потребляемой электроэнергии вырабатывается тепловыми электростанциями и лишь малая доля приходится на гидро- и атомные электростанции. Такое положение в производстве электроэнергии не может продолжаться, так как с каждым годом состояние топливного вопроса становится все более серьезным. К тому же следует отметить, что к. п. д. даже самых современных тепловых электростанций не превышает 40%, а в среднем их к. п. д. 25%. Кроме того, иногда необходимы малогабаритные, легкие и эффективные источники электрической энергии. Такими достоинствами обладают гальванические элементы они автономны, малогабаритны, бесшумны [c.254]

    Охарактеризуйте основные области применения химических источников электрической энергии. [c.100]

    Такие процессы, осуществляемые при помощи внешнего источника электрической энергии, называются реакциями электролиза и проводятся в электролитических ячейках (электролизерах). [c.221]

    Отсюда видно, что э. д. с. водородно-кислородного элемента зависит от парциальных давлений газов, но не зависит от pH среды. Следовательно, в растворах щелочей, кислот и в воде э. д. с. должна быть одинаковой. Электропроводность чистой воды очень мала, поэтому к ней обычно добавляют раствор КОН. Иначе водороднокислородную цепь можно записать М1, Н2 КОН 02, Мг. Источником электрической энергии в ней является энергия химической реакции образования воды из газообразных водорода и кислорода  [c.435]

    Химические источники электрической энергии. Мы уже знаем, что при любой окислительно-восстановительной реакции происходит переход электронов от восстановителя к окислителю. Так, при опускании цинковой пластинки в раствор сульфата меди происходит реакция [c.268]

    В принципе, электрическую энергию может Дс1,ть любая окислительно-восстановительная реакция. Однако число реакций, практически используемых в химических источниках электрической энергии, неве.лико. Это связано с те.м, что не всякая окислительно-восстановительная рег кция позволяет создать гальванический элемент, обладающий технически ценными свойствами (высокое и практически постоянное напряжение, возможность отбирания больших токов, [c.272]

    Второй вопрос, возникший при создании вольтова столба, — это вопрос о причинах возникновения электрического тока и источнике электрической энергии. Согласно представлениям А. Вольта, электрическая энергия в гальваническом элементе возникает в результате контакта двух различных металлов (так называемая контактная теория э. д. с.). Основанием этой теории послужило следующее явление. Если два различных металла привести в соприкосновение, а затем раздвинуть, то при помощи электроскопа можно обнаружить, что один металл приобрел положительный, а другой — отрицательный заряд. Ряд металлов, в котором каждый предшествующий металл заряжается положительно после контакта с последующим (ряд Вольта), оказался до некоторой степени аналогичным ряду напряжений. Отсюда А. Вольта сделал вывод, что э. д. с. гальванического элемента обусловлена только контактной разностью потенциалов. Однако теория Вольта не объясняла полностью явлений возникновения электрической энергии при работе гальванического элемента, так как даже при длительном протекании тока граница соприкосновения двух металлов не изменялась. А. Вольта считал, что гальванические элементы представляют собой вечные двигатели.. Экспериментальная проверка не подтвердила этого предположения, и после установления закона сохранения энергии для объяснения э. д. с. гальванических элементов была выдвинута химическая теория, согласно которой источником электрической энергии является энергия химической реакции, протекающей в гальваническом элементе. [c.10]

    Поляризацию можно осуществить включением электрода в цепь постоянного тока. Для этого необходимо составить электролитическую ячейку из э.лектро-лита и двух электродов — изучаемого и вспомогательного. Включая ее в цепь постоянного тока, можно сделать изучаемый электрод катодом или (при обратном включении ячейки) анодом. Такой способ поляризации называется поляризацией от внешнего источника электрической энергии. [c.286]


    Второй вопрос, возникший при создании вольтова столба,— это вопрос о причинах возникновения электрического тока и источнике электрической энергии. Согласно представлениям Вольта электрическая энергия в гальваническом элементе возникает в результате контакта двух различных металлов (так называемая контактная теория [c.8]

    Непосредственно после создания первого источника электрической энергии вопрос о скорости электродных процессов в явном виде не был поставлен. Он возник позже, когда электрический ток начали широко использовать для осуществления различных электрохимических превращений и выяснили, что разность потенциалов, которую необходимо приложить к электродам для осуществления того или иного процесса, не соответствует предсказываемой термодинамикой. Первоначально отклонение потенциала от равновесного значения при пропускании тока, получившее название перенапряжения (1899), связывали с изменением концентрации веществ у электрода, что в соответствии с [c.9]

    Приложение законов термодинамики к электрохимическим системам позволяет установить количественную связь между электрической энергией электрохимических систем и изменением химической эпергип протекающих в них токообразующих химических реакций. Правильно определяя химическую энергию токообразующих реакций как источник электрической энергии электрохимических систем, термодинамика, являясь наукой о наиболее общих закономерностях, не в состоянии показать, какими путями, по какому механизму химическая энергия превращается в электрическую, из чего слагается э.д.с., что собой представляет потенциал электрода. [c.23]

    Любая электрохимическая цепь в принципе может служить источником электрического тока. При соединении крайних электродов металлическим проводником вследствие наличия э.д.с. по проводнику начинают двигаться электроны от электрода с более отрицательным потенциалом к электроду с менее отрицательным потенциалом. Одновременно на поверхности электродов происходят электрохимические реакции, энергия которых служит источником электрической энергии, выделяющейся во внешней цепи. По разным причинам (малая электрическая емкость, малая скорость и необратимость химических реакций, физические изменения электродов при эксплуатации и т. д.) ббль" шая часть цепей не может быть практически использована для получения электрического тока, и лишь немногие имеют прикладное значение в качестве химических источников тока. [c.598]

    Химические источники электрической энергии. Мы уже знаем, что прн любой окислительно-восстановительной реакции преисходит переход электронов от восстановителя к окислителю, [c.272]

    Устройства, которые применяют для непосредственного преобразования энергии химической реакции в электрическую энергию, называются гальваническими элементами. Их называют также химическими источниками электрической энергии (сокращенно ХИЭЭ) или химическими источниками тока. [c.273]

    Как и в случае химического источника электрической энергии, электрод, на котором происходит восстановление, называется катодом электрод, на котором происходит окисление, называется анодом. Но при электролизе катод заряжен отрицательно, а анод — положительно, т. е. расиределение знаков заряда электродов противоположно тому, которое имеется при работе гальванического элемента. Причина этого заключается в том, что процессы, нроте-1ииощие ирн электролизе, в принципе обратны процессам, идущим ирн работе гал])Ваиического элемента. При электролизе химическая реакци.ч осуществляется за счет энергии электрического тока, подводимой извне, в то время как ири работе гальванического элемента энергия самопроизвольно протекающей в нем химической реакции превращается в электрическцю энергию. [c.294]

    Постоянная катодная поляризация изделия, экс-плуатируюш,егося в среде с достаточно большой электропроводностью. Такая поляризация, осуществляемая от внешнего источника электрической энергии, носит название катодной защиты. В некоторых случаях катодная поляризация может осуществляться не постоянно, а периодически, что дает ощутимый экономический эффект. При катодной защите изделию сообщается настолько отрицательный электрический потенциал, что окисление металла становится термодинамически невозможным. [c.18]

    Электрохимия — это наука, которая изучает закономерности, связанные с взаимным превращением химической и электрической форм энергии. Взаимное превращение этих форм энергии совершается в электрохимических системах. Непременными составными частями электрохимической системы являются ионный проводник электричества — электролит два металлических электрода, которые создают контакт двух фаз — жидкой и твердой внешняя цепь — металл1 ческий проводник, обеспечивающий прохождение тока между электродами. Для того чтобы знать, каким закономерностям подчиняются электрохимические реакции, от чего зависит их скорость, что является источником электрической энергии в электрохимической системе и каков механизм прохождения электрического тока, необходимо изучить свойства растворов электролитов, электрохимические равновесия на поверхности раздела двух фаз, термодинамику электрохимических систем и кинетику электродных процессов. [c.6]

    Итак, направление процессов, на электродах гальванической пары зависит от прилагаемого извне встречного напряжения. Если оно меньше Е, то гальваническая пара выступает в роли химического источника электрической энергии, т. е. гальванического элемента в ней протекают самопроизвольные окислительновосстановительные процессы за счет которых она производит электрическую работу. А если встречное напряжение превосходит Е, то в гальванической паре протекают окислительно-восстановительные процессы, обратные процессам, идущим в гальваническом элементе, и при этом она потребляет энергию от источника электрического тока, что указывает на несамопроизвольность идущих в ней процессов. [c.249]

    Несомненно, что в скором будущем топливные элементы получат распространение в качестве автономных источников электрической энергии, выгодно отличающихся высокой экономичностью и экологическими свойствами. Они могут быть использованы не только в качестве источников питания радиоаппаратуры и электронных приборов, но и на автомобильном и железнодорожном транспортах, вытесняя двигатели внутреннего сгорания. Так же не исключена воздюжность использования топливного элемента в качестве источника электроэнергии на крупных промышленных электростанциях, т. е. он может вступить в конкуренцию с развивающейся атомной энергетикой. [c.256]

    Химические источники электрической энергии применяются в различных отраслях техники. В средствах связи (радио, телефон, телеграф) н в электроизмерительной аппаратуре они с.1ужат источниками электропитания, на автомобилях, само.петах, тракторах применяются для приведения в действие стартеров и других устройств, на транспорте, в переносных фонарях с их помощью производится освещение. [c.273]

    К электрохгшическим методам защиты металлов относятся катодная запщ-та, протекторная защита и др. При катодной защите защищаемая конструкция или деталь присоединяется к отрицательному полюсу источника электрической энергии и становится катодом. В качестве анодов используются куски железа или специально изготовленные сплавы. При надлежащей силе тока в цепи на защищаемом изделии происходит восстановление окислителя, процесс же окисления претерпевает вещество анода. [c.692]


Смотреть страницы где упоминается термин Источники электрической энергии: [c.193]    [c.193]    [c.203]    [c.212]    [c.279]    [c.560]    [c.26]    [c.16]    [c.108]    [c.311]    [c.269]    [c.8]    [c.8]   
Смотреть главы в:

Проектирование и принципы сооружения нефтезаводов -> Источники электрической энергии




ПОИСК





Смотрите так же термины и статьи:

Электрическая энергия

Электрический ток, источники



© 2025 chem21.info Реклама на сайте