Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дальнейшее развитие аминокислотного анализа

    По мере развития наших работ по изучению химической природы антибиотиков и других биологически активных веществ возникла необходимость дальнейшего совершенствования методов анализа концевых функциональных групп, определения молекулярного веса, аминокислотного состава биологически активных веществ. [c.407]


    Дальнейшее развитие аминокислотного анализа [c.328]

    Дальнейшее развитие и совершенствование метода ионообменной хроматографии для аминокислотного анализа белков идет по пути уменьшения количества гидролизата, необходимого для анализа и упрош е-ния аппаратуры. [c.69]

    А (Б. Меррифилд, 1969). Дальнейшее развитие получили аналит. методы стал широко использоваться автоматич. аминокислотный анализатор, созданный С. Муром и У. Стайном в 1958, существенно модифицированы хроматографич. методы, до высокой степени совершенства доведен рентгеноструктурный анализ, сконструирован автоматич. прибор для определения последовательности аминокислотных остатков в Б.-секвенатор (П. Эдман, Г. Бэгг, 1967) Благодаря созданию прочной методнч. базы стало возможным проводить широкие исследования аминокислотной последовательности Б. В эти годы была определена структура неск. сотен сравнительно небольших Б. (до 300 аминокислотных остатков в одной цепиХ полученных из самых разл. источников как животного, так и растит., бактериального, вирусного и др. происхождения. Среди них — протеолитич. ферменты (трипсин, химотрипсин, субтилн-зин, карбоксипептидазы), миоглобины, гемоглобины, цитохромы, лизоцимы, иммуноглобулины, гистоны, нейротоксины, Б. оболочек вирусов, белково-пептидные гормоны и др. В результате были созданы предпосылки для решения актуальных проблем энзимологии, иммунологии, эндокринологии и др. областей физ.-хим. биологии. [c.248]

    Стремление свести рассмотрение конформационных свойств природных аминокислотных последовательностей к анализу решетчатых моделей объясняется не только естественным желанием максимально упростить задачу. Не меньшее значение имело также то обстоятельство, что модели такого вида уже давно использовались в физике полимеров. Впервые и сразу же в квадратном и кубическом вариантах они были предложены в 1947 г. У. Орром [106] при изучении конформационных свойств синтетических гомополимеров и вскоре стали основой дальнейшего развития конфигурационной статистики полимерных цепей. Лишь спустя 30 лет решетчатые модели были опробованы Гё и Такетоми для белков [57] Моделирование сложного объекта с помощью простых схем может иметь физический смысл и быть оправданным только при одном непременном условии исследуемые макроскопические свойства этого объекта, а именно, самопроизвольное свертывание белковой цепи в компактную нативную конформацию, не должны определяться индивидуальными свойствами его микроскопических составляющих, т.е. конкретным химическим строением 20 стандартных аминокислотных остатков. [c.498]


    Эмпирическое направление, рассмотрение которого было начато во втором томе настоящего издания, базируется на данных статистического анализа известных кристаллических структур белков, равновесной термодинамики, формальной кинетики и концепциях Полинга-Кори и Козмана, т.е. исходит из предположения об исключительной роли в сборке гетерогенной аминокислотной последовательности регулярных вторичных структур и представления о гидрофобных взаимодействиях как главной упаковочной силе. Считается, что по сравнению с множеством мыслимых нерегулярных локальных структур вторичные структуры являются самыми стабильными их возникновение, инициирующее процесс и обусловливающее дальнейшее его развитие, осуществляется с наибольшей скоростью. Благодаря гидрофобным взаимодействиям вторичные структуры образуют супервторичные, т.е. полярные остатки стремятся расположиться на внешней оболочке глобулы, а неполярные - в ее интерьере. Идеальная модель трехмерной структуры белка, согласно эмпирическому подходу, должна представлять собой ансамбль вторичных и супервто-ричных структур и иметь гидрофобное ядро, экранированное от водной среды гидрофильной оболочкой. Процесс создания такой модели из статистического клубка должен быть равновесным фазовым переходом первого рода, подчиняющимся классической термодинамике, статистической физике и формальной кинетике так же, как им подчиняются процессы кристаллизации малых молекул и образования линейных спиральных сегментов гомополипептидов. [c.6]


Смотреть страницы где упоминается термин Дальнейшее развитие аминокислотного анализа: [c.126]    [c.500]    [c.500]    [c.23]   
Смотреть главы в:

Жидкостная колоночная хроматография том 2 -> Дальнейшее развитие аминокислотного анализа




ПОИСК





Смотрите так же термины и статьи:

Дальнейшее развитие



© 2025 chem21.info Реклама на сайте