Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фазовые превращения переходы первого рода

    Кроме фазовых переходов первого рода, существуют также фазовые переходы второго рода. Для них характерно не только равенство изобарных потенциалов, но и равенство энтропий и объемов сосуществующих в равновесии фаз, т. е. отсутствие теплового эффекта процесса и изменения объема при температуре превращения  [c.143]

    Теплоты и температуры фазовых переходов. Расчеты термодинамических функций веществ в твердом состоянии проводились для равновесных модификаций этих веществ. По мере повышения температуры твердые вещества могут иметь фазовые переходы, сопровождающиеся тепловыми эффектами. Различают фазовые переходы первого рода, при которых внутренняя энергия (и плотность) вещества изменяется скачком, и фазовые переходы второго рода, при которых не происходит скачкообразного изменения этих величин, однако их частные производные — теплоемкость, сжимаемость и коэффициент термического расширения — изменяются скачком в точке превращения. [c.145]


    Таким образом, существует некоторая характеристическая температура (точка Кюри), выше которой имеется полный беспорядок, а ниже — усиливающийся при дальнейшем понижении температуры порядок. Такое превращение носит название фазового перехода второго рода. В отличие от фазовых переходов первого рода при фазовых переходах второго рода термодинамические функции не изменяются Аи = 0 АЯ = 0 Д5 == 0 АО = 0 ДУ = 0. [c.248]

    Фазовые переходы, характеризующиеся равенством изобарных потенциалов двух сосуществующих в равновесии фаз и скачкообразным изменением энтропии и объема при переходе вещества из одной фазы в другую, называются фазовыми переходами первого рода. К иим относятся агрегатные превращения—плавление, испарение, возгонка и др. [c.140]

    Превращения, которые рассматривались нами до сих пор, такие, как плавление, сублимация, испарение, переход вещества из одной аллотропической модификации в другую и т. д., характеризуются равенством изобарно-изотермических потенциалов двух сосуществующих в равновесии фаз и скачкообразным изменением энтропии и объема при переходе вещества из одной фазы в другую. Переходы, для которых при некоторой определенной температуре, являющейся температурой фазового превращения, на кривых первых производных изобарно-изотермического потенциала наблюдается разрыв функциональной зависимости, называются фазовыми переходами первого рода. Таким образом, условия фазового перехода первого рода имеют вид [c.271]

    Ниже остановимся только на полиморфных превращениях — фазовых переходах первого рода, связанных со структурными изменениями кристаллических веществ. На примере переходов модификаций углерода — алмаза и графита — и олова (элементы, расположенные в одной подгруппе Периодической системы) обсудим термодинамический, кинетический и структурный аспекты полиморфных превращений. [c.219]

    Уравнение Клапейрона — Клаузиуса применимо к любому виду фазового перехода первого рода испарению, плавлению, полиморфному превращению в твердых веществах. Как видно, влияние давления на температуру перехода будет зависеть от знаков АЯ и А У и соотношения их абсолютных значений. [c.52]

    Щении гелия I в гелий И. Фазовый переход первого рода в критической точке также характеризуется признаками, типичными для фазового превращения второго рода. [c.223]

    Таким образом для фазовых переходов второго рода уравнения Эренфеста играют ту же роль, что и уравнения Клапейрона — Клаузиуса для переходов первого рода. Особенность фазовых переходов второго рода — отсутствие скачкообразного изменения 5, ЧТО приводит К отсутствию скачка йр/ёТ. Благодаря этому кривые р Т) для каждой из фаз образуют единую непрерывную линию, разные ветви которой отвечают разным фазам. Поэтому при фазовых превращениях второго рода не существует метастабильных состояний, аналогичных переохлажденной жидкости при фазовых переходах первого рода. [c.132]


    Полученные результаты подтверждают представления [171, с. 312 589, с. 1154—1161] о ступенчатом характере деформации полимеров, связанном не с фазовым переходом первого рода (не с плавлением и кристаллизацией в привычном смысле слова), а с более сложным превращением надмолекулярных структур. [c.64]

    Так как для фазового перехода второго рода и для перехода в критической точке температура фазового превращения является одновременно и температурой абсолютной потери устойчивости обеих фаз, принимающих участие в превращении, то каждая Ф может существовать лишь по одну сторону от точки фазового превращения. Ситуация здесь коренным образом отличается от т и, которая имеет место при фазовых переходах первого рода. В последнем случае фазы могут существовать по обе стороны от температуры фазового перехода в интервале, ограниченном точками абсолютной неустойчивости фаз. Этот интервал определяет максимальный гистерезис при переохлаждении и перегреве. [c.33]

    Феноменологическая теория фазовых переходов не позволяет вывести достаточные условия, которым должна удовлетворять система многих частиц для того, чтобы в ней реализовался фазовый переход второго рода. Причина этого заключается в том, что тип фазового превращения определяется всей совокупностью динамических свойств системы многих частиц. Однако, если заранее предположить, что в системе происходит фазовый переход второго рода, то, исходя из этого предположения, можно установить некоторые условия, которым должна удовлетворять система для того, чтобы в ней действительно мог происходить этот фазовый переход. Нарушение необходимых условий приводит к тому, что в системе оказывается невозможным фазовый переход второго рода и, следовательно, происходит фазовый переход первого рода. Если же система удовлетворяет необходимым условиям фазового перехода второго рода, то в ней, в принципе, возможны как фазовый переход второго, так и первого рода. [c.42]

    В этих данных содержится кажущееся противоречие с одной стороны, показано, что процесс плавления гомополимеров представляет собой резкий и хорошо воспроизводимый процесс, а, с другой стороны, казалось бы нарушается одно из основных требований к фазовому переходу первого рода, а именно при постоянном давлении температура превращения не должна зависеть от относительного содержания двух равновесных фаз. На самом же деле, попросту нет оснований полагать, что в выполненных до настоящего времени опытах удалось добиться предельных условий кристаллизации и отжига. Любое дальнейшее приближение к равновесным условиям должно обязательно сужать область плавления. [c.38]

    Поскольку экспериментальные результаты подтверждают предположение о том, что превращение кристалл — жидкость в полимерах обладает характеристиками фазового перехода первого рода, любые количественные описания следует вести в терминах такого фазового перехода. Этот важный вывод вытекает из формального анализа экспериментальных данных и не требует конкретизации структурных особенностей какой-либо из [c.40]

    Общим для обеих моделей является предположение, что процесс кристаллизации носит трехмерный характер. В обоих случаях расчет приводит к заключению, что превращение кристалл — жидкость представляет собой фазовый переход первого рода. Теория предсказывает, что плавление происходит резко и прерывно при строго определенной температуре. Играющая существенную роль в упоминавшемся интуитивном подходе к плавлению энтропийная составляющая, обусловленная неупорядоченными сегментами цепи при температурах, ниже Гпл, никак не проявляется. Тщательный анализ показывает, что этот результат является прямым следствием трехмерной природы кристаллита. Требования, чтобы конечные звенья кристаллических последовательностей (будь то последовательности, образованные многими цепями или одной цепью) все лежали в плоскости, перпендикулярной оси цепей, настолько строго, что в условиях равновесия фаз концентрация звеньев в аморфных областях должна быть существенно ограничена. Степень кристалличности (I—к) будет очень высока, приближаясь к единице, тогда как равновесная длина кристаллита будет приближаться к размерам вытянутой макромолекулы. [c.42]

    Флори и Гарретт [76] показали, что классическая гелевая система желатина — вода возникает в результате перехода жидкость—кристалл поэтому процесс гелеобразования или превращения в золь может быть отнесен к фазовым переходам первого рода. [c.119]

    Исследования кинетики нуклеации в расплавах дают представление о возможностях метода статистического термического анализа при изучении диаграмм состояния и кинетики фазовых превращений. Если начало процесса сопровождается заметным термическим эффектом, метод СТА может быть использован аналогичным образом для исследования кинетики фазовых переходов первого рода в расплавах, растворах и твердых телах. Статистический термический анализ повышает точность, надежность и достоверность данных терми- [c.101]

    Фазовые переходы первого рода, характеризуемые скачкообразным изменением таких термодинамических функций, как энергия, свободная энергия и т. п. При реализации таких переходов поглощается или выделяется определенная теплота фазового превращения. В качестве примеров фазовых переходов первого рода можно указать изменение агрегатного состояния вещества (в частности, кристаллизацию) и превращение одной кристаллической модификации в другую. [c.31]


    В максимуме. Таким образом, после отжига в аморфном полимере удается наблюдать превращение, имитирующее фазовый переход первого рода. [c.184]

    Таким образом, наблюдается переход от статистической однородности, когда по узлам геометрически правильной решетки атомы распределены в каотическом беспорядке, к однородности кристалла индивидуального химического соединения, т. е. к геометрически правильной решетке, в узлах которой правильно чередуются образующие ее атомы. Это превращение протекает при постоянной температуре п сопровождается тепловым эффектом, подобно фазовому переходу первого рода. Если общий состав твердого раствора близок к составу Р1С[1б, но не совпадает с ним, то кристаллическая решетка тоже перестраивается, но эта перестройка протекает уже в некотором интервале темпера- [c.413]

    Шулеиов и Ярмочкина [138], базируясь на структурных превращениях нефтяного углерода, сопровождающихся на разных стадиях выделением и поглощением энергии, а также скачкообразным измененЕгем удельных объемов, характеризуют процесс облагораживания нефтяных коксов как размытый фазовый переход первого рода. [c.189]

    Некоторые жидкие кристаллы могут находиться и в смектическом, и в нематическом состояниях. Фазовые превращения таких веществ из кристаллического состояния в жидкое при повышении температуры проходят по схеме кристалл смектиче-ская фаза->-нематическая фаза->-жидкость. Все эти превращения—фазовые переходы первого рода, сопровождающиеся изменением внутренней энергии, плотности и энтропии системы. Энтальпия перехода жидкого кристалла в жидкость в десятки раз меньше энтальпии плавления, а энтальпия перехода смектической фазы в нематическую еще меньше. [c.166]

    Все многообразие фазовых переходов классифицируется на фазовые переходы первого и второго родов. При фазовом пе- )еходе первого рода выделяется или поглощается определенное количество теплоты, изменяются объем и плотность вещества, его энтропия, теплоемкость и т, п. Фазовые переходы первого рода — плавление, испарение, возгонка, полиморфное превращение и другие — характеризуются равенством изобарных потенциалов двух сосуществующих в равновесии фаз. В отличие от фазовых переходов первого рода для фазовых переходов второго рода свойственно не только равенство изобарных потенциалов, но и равенство энтропий, объемов и плотностй фаз. К фазовым переходам второго рода относятся магнитные превращения при температуре Кюри, переход вещества в сверхпроводящее состояние, появление сверхтекучести у гелия, переход из парамагнитного состояния в ферромагнитное и др. Одно из объяснений фазовых переходов второго рода состоит ь изменении симметрии частиц системы, например, переход системы частиц с беспорядочно направленными спинами в систему частиц с преимущественной ориентацией спинов или переход нз неупорядоченного распределения атомов А и В по узлам кристаллической решетки в упорядоченное, [c.219]

    КЛАПЕЙРОНА-КЛАУЗИУСА УРАВНЁНИЕ, устанавливает связь между изменениями равновесных значений т-ры Т и давления р однокомпонентной системы (чистого в-ва) при фазовых переходах первого рода (плавлении, испарении, сублимации, полиморфных превращениях). Имеет вид  [c.398]

    Конечно, слово полностью требует уточнений. Совсем забывать о реальном существовании этой не принимаемой во внимание внутренней структуры нельзя, ибо ее конкретный характер может определять межмолекулярные взаимодействия и внутреннее поле кристалла и, соответственно, оптические и акустические ветви его колебательных спектров. Далее, надо всегда помнить, что ликвидация кристаллического порядка возможна не только в результате фазового перехода первого рода — плавления, но и вследствие разрушения структонов или их структурных превращений при химических реакциях. Но подобные ситуации, как правило, выходят за рамки нормаль- ной теории фазовых переходов, и мы ими в дальнейшем — за исключением особых ситуаций, возникающих в случае ковалентных кристаллов,— пренебрегаем. [c.90]

    В случае фазового перехода второго рода и распада в критической точке фазовое превращение всегда идет без образования зародышей, так как температура абсолютной потери устойчивости Го совпадает с равновесной температурой фазового превращения Тс (Т = Г(,). Это обстоятельство, на которое иногда не обращается должного внимания, составляет одну из интересных особенностей, отличающих механизм фазового перехода второго рода и распада в критической точке от механизма фазового перехода первого рода. Из равенства Гц = Г,., имеющего место для фазового перехода второго рода, следует, что выше Г<. (Г Г ) однородный твердый раствор обладает абсолютной устойчивостью и однородному состоянию отвечает абсолютный минимум свободной энергии. Ниже Тс (Т Г ), когда однородный твердый раствор теряет свою устойчивость относительно малых флюктуаций атолтых распределений, однородному состоянию системы отвечает седловая точка на гиперповерхности в функциональном пространстве атомных распределений, которую образует свободная энергия. [c.41]

    При изучении плавления любых веществ широко используются измерения теплоемкости. В принципе этот метод может дать ценную термодинамическую информацию. Данные Вундерлиха и Доля [5] для образцов линейного полиэтилена (рис. 12) типичны для ненабухшего гомополимера. В этом опыте перед измерениями расплав полимера медленно охлаждался. Характер кривой на рис. 12 напоминает Я-переход, присущий превращениям типа порядок-беспорядок в бинарных сплавах. Теплоемкость быстро возрастает в интервале 120—137° С, достигает максимума, стремительно падает и затем принимает постоянное значение. Для идеального фазового перехода первого рода в однокомпонентной системе теплоемкость при температуре перехода должна обращаться в бесконечность. Поскольку на опыте это не наблюдается, напрашивается заключение, что плавление полимерных систем не может рассматриваться как фазовый переход первого рода. [c.34]

    Ряд авторов (Жаффрей [1], Мейер и Стритт[2], Эйкен [3] и др.) пытались это многообразие переходов классифицировать, разделяя их на большое число типов простые переходы первого рода, аномальные переходы первого рода, анонсированные переходы первого рода, предельные переходы первого рода, диффузионные, Х-переходы, простые переходы второго рода, смешанные переходы и т. д. Такая классификация не может нас удовлетворить, так как является громоздкой, формальной, оторванной от механизма и молекулярной природы фазовых превращений. [c.67]

    Процессы плавления, кристаллизация, сублимации и другие у кристаллических низкомолекулярных веществ протекают со скачкообразным изменением удельных свойств веществ (удельный или мольный объем, внутренняя энергия и энтропия одного грамма или одного моля). 0дн0(временн0 наблюдается равенство термодинамических потенциалов фаз, находящихся в равновесии, как, например, в системе вода — лед. В процессе этих превращений происходит изменение подвижности молекул, увеличивается (или уменьшается) расстояние между молекулами и т. д. Такие превращения называются фазовыми переходами первого рода. [c.80]

    Точка Нееля, ДЯ=0,222 0,04. фазовый переход первого рода, связан ный с упорядочением ионов Fe и Fe+ g октаэдрических узлах, ДЯ=0,662 вычислено в интервале 110—125 К. 1% катионных вакансий, ДЯ-0,410 вычислено в интервале 106—113 К. 2% катионных вакансий, ДЯ-0,092 вычислено в интервале 100—120 К. Фазовый переход второго рода. Точка Нееля, ДЯ-3,22+0,42. ДЯ-0,306 вычислено в интервале 240—298 К. Мо-нотектнческое превращение. ДЯ—21,14 2.5, Д5=15,99. Очень медленное превращение. В интервале от 130 до 150° С обе фазы регистрируются одновременно [54]. Вероятно, фазовые переходы второго рода, [144]. "> ДЯ= = 17,53 1,2б, Д5 = 4,77. р=(3040). р=(8100). ДЯ-13,0, Д5-4,94. р = -5100). р = (10100). > ДЯ-4.75 (1, с. 167]. ДЯ=5,95 0,42 [1]. ДЯ=2,9. Д5-2,76. > 2 р-(2030). "= р = (6080). " По Брауэру [1, с. 167]. "= По Гольдшмидту [1]. 6 По Шеферу и Рою [I]. ДЯ-226,1. " р=(6580). " ДЯ-1,88. Д5-2,700. p-(12I6-10 ), ДЯ-13,4, Д5-15,9. ДЯ—0.976 0,126, иеобра-тимы переход. Предположительно. При 400° С обнаруживаются кубическая (С) и моноклинная (В) формы, с 500 до 700° С—только моноклинная (В) форма, с 900 до 1300° С — только гексагональная форма (Л) [99]. [137, 138, 156]. 125 X — пока не идентифицированная фаза [137, 138], по [102] — высокотемпературная кубическая фаза. [138, 77]. Необратимое превращение без промежуточной В-формы [154]. = [113]. Погрешность при измерении температуры 20° С, все переходы (кроме С- В) обратимы. Необратимое превращение [113]. [137, 138]. ai [19]. [137, 138]. [137, 138, 156]. р- 4050). 1м р—(5070). Обратное превращение протекает с гистерезисом в интервале 1600—1500° С. 1/50 WsoOhs. ДЯ- ,38 0,21, Д5-2.30. ДЯ-1.88 0,21, Д5 = 1,84. ДЯ = 1,17 0,13. ЛЯ-0.50 0,13. ДЯ=0,4, Д5=0,50. > ДЯ—1,68, переход a->- замедленный [1]. При нагревании на воздухе, переход a- - происходит также при повышенном давлении и размалывании. I ДЯ=41,4 2.1, Д.9-41,28. Необратимый переход. При охлаждении ниже 730° С [52]. При охлаждении [52]. При нагревании, в образце [c.92]

    При исследовании теплоемкости атактического полипропилена Уилкинсон и Дол обнаружили два превращения (перехода) типа фазового перехода первого рода при 70 и 155° С, тепловые эффекты которых составляют соответственно 1,7 и 0,4 кал/г. Превращение при 70° С было обусловлено плавлением гетеротактических звеньев, присутствующих в полимерной цени, а превращение при 155° С авторы объясняют плавлением изотактических или синдиотактиче-ских блоков, которые могут присутствовать в атактическом полипропилене. Эти превращения зависят, по-видимому, от способа получения атактического полипропилена, поскольку в других независимых исследованиях их не обнаружили [c.187]


Смотреть страницы где упоминается термин Фазовые превращения переходы первого рода: [c.222]    [c.69]    [c.50]    [c.32]    [c.38]    [c.51]    [c.48]    [c.49]    [c.453]    [c.361]    [c.184]    [c.91]    [c.167]    [c.182]    [c.182]   
Введение в молекулярную теорию растворов (1959) -- [ c.453 ]

Введение в молекулярную теорию растворов (1956) -- [ c.453 ]




ПОИСК





Смотрите так же термины и статьи:

Переход первого рода

Переходы I рода

Переходы фазовые

Превращение фазовое

первого рода



© 2024 chem21.info Реклама на сайте