Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ДНБ-аминокислотные природные

    Вторичная структура белка — форма полипептид-ной цепи в пространстве. С помощью рентгеноструктурного анализа и других физических методов исследования установлено, что полипеп-тидные цепи природных белков находятся в скрученном состоянии — в виде спирали. Спиральная структура удерживается водородными связями, возникающими между группами СО и NH аминокислотных остатков соседних витков спирали (на рис. 18.1, а обозначены пунктиром). Подобная вторичная структура получила название а-спирали (рис. 18.1, а). Водородные связи в ней направлены параллельно длинной оси спирали (а-спирали чередуются с аморфными частями). [c.352]


    Уже одно изменение последовательности и соотношения аминокислотных остатков в пептидной цепи может явиться причиной многообразия белков Но белок может быть построен из одной или нескольких пептидных цепей разной длины, эти цепи могут образовывать циклы, тоже отличающиеся по размерам. Наконец цепи могут связываться одна с другой по разным участкам и разными гр>-ппами. Если к этому еще добавить, что огромное число природных белков связано с другими органическими и неорганическими соединениями, то станет понятно их мно гообразие в природе. [c.434]

    Аминокислотный состав белков. — Анализ гидролизата белков, содержащего до двадцати различных аминокислот (см. табл. 39), является чрезвычайно сложной задачей. Риттенберг (1940) разработал метод изотопного разбавления, согласно которому радиоактивную кислоту определенной удельной активности, например меченую глутаминовую кислоту, добавляют в известном количестве к анализируемой смеси, после чего выделяют глутаминовую кислоту обычным образом. Так как химические свойства природной и меченой кислоты одинаковы, то выделяемое вещество является смесью добавленной аминокислоты и первоначально присутствовавшей в пробе. Количество кислоты в гидролизате вычисляют по изотопному составу выделенной кислоты. Если добавляется рацемическая меченая кислота, то аминокислоты гидролизата перед выделением рацемизуют или же из выделенного рацемата отделяют чистую -форму. Точность анализа не зависит от метода выделения, выхода кислоты или концентрации ее в гидролизате. [c.655]

    Монография посвящена рассмотрению существующих подходов к изучению принципов молекулярной структурной организации и механизма свертывания белка в нативную конформацию Книга состоит из введения и четырех частей В первой части изложена бифуркационная теория самосборки полипептидной цепи, физическая конформационная теория и метод априорного расчета пространственного строения белка по известной аминокислотной последовательности В других частях рассмотрены конформационные возможности простейших пептидов, сложных олигопептидов и белков Представлены результаты количественного анализа конформационных состояний большого числа пептидов и низкомолекулярных белков Изложен подход автора к решению обратной структурной задачи, позволяющей целенаправленно конструировать наборы искусственных аналогов, пространственное строение которых выборочно отвечает низкоэнергетическим, потенциально биологически активным конформациям природного пептида [c.4]


    Все эти положения были высказаны Э. Фишером более 50 лет тому назад. Но за последние 10—15 лет был накоплен огромный фактический материал о продуктах распада белка и было синтезировано огромное число пептидов, среди них ряд природных, что окончательно подтвердило эту точку зрения (см. стр 524—525). Наряду с полипептидами и белками за последнее время среди природных соединений найдено значительное количество циклических пептидов. Некоторые из них обладают гормональным действием, например вазопрессин, регулирующий кровяное давление, другие являются продуктами жизнедеятельности микроорганизмов, например грамицидины. Одни из этих циклопептидов состоят только из аминокислотных остатков (грамицидин), другие содержат в цикле и другие элементы— серу. Швицер предложил называть первые гомодетными и вторые гетеродетными циклопептидами. [c.486]

    ПЕПТЙДЫ, природные или синтетич соед., молекулы к-рых построены из остатков о-аминокислот, соединенных мезКду собой пептидными (амидными) связями С(0)—NH. Могут содержать в молекуле также неаминокислотную компоненту (напр., остаток углевода). По числу аминокислотных остатков, входящих в молекулы П., различают дипептиды, трипептиды, тетрапептиды итд П., содержащие до 10 аминокислотных остатков, наз олигопептидами, содержащее более Ш аминокислотных остатков-аолипепти-дами. Прир. полипептиды с мол м более 6 тыс. мз. белками- [c.469]

    Для синтеза природных полипептидных цепей со строго заданной последовательностью аминокислотных остатков необходим многоступенчатый синтез, в котором число стадий конденсации равно степени полимеризации получаемого полипептида Р. Так как для направленного синтеза необходимо, чтобы вводимая аминокислота прореагировала только с другой заданной аминокислотой или пептидом, то она должна быть монофункциональна и соответственно одна из групп — амино- ли карбоксильная группа — должна быть защищена определенной группировкой, которая перед проведением следующей ступени синтеза может быть достаточно легко снята без разрыва пептидной связи. В упрощенном виде пептидный синтез может быть представлен следующей схемой  [c.380]

    Ферменты — это сополимеры, состоящие из различных аминокислотных мономеров. Поэтому легко понять, почему использованию синтетических органических полимеров для воздействия на активность низкомолекулярных соединений уделяется в последнее время все большее внимание [168] эти реакции могут служить в качестве моделей для более сложных ферментативных процессов. Хотя полимерные катализаторы значительно менее эффективны, чем ферменты, обнаружено некоторое сходство между природными и синтетическими макромолекулярными системами. В частности, полимер с заряженными группами склонен концентрировать и/или отталкивать находящиеся вблизи него низкомолекулярные ионные реагенты и продукты, и, следовательно, он будет функционировать как ингибитор или ускоритель реакции, протекающей между двумя молекулами. Однако если к такому полимеру присоединить еще и каталитически активные группы, то уже сама молекула полимера, а не его противоионы, будет принимать участие в катализе 169, 170]. [c.294]

    ГАСТРИН, пептидный гормон. Первичная структура Г. человека Пироглу — Гли — Про — Три — Лей — Глу — Глу — Глу — Глу — Глу — Ала — Тир - (НЗОз) — Гли— Три — Мет — Асп — Фен — NH2 (мол. м. 2200 букв, обозначения см. в ст. а-Аминокислоты). У животных различается аминокислотными остатками в положениях 5, 8 н 10. Фрагмент 6—17 сохраняет полную, а С-кон-цевой тетрапептидный фрагмент — /12 часть биол. активности природного Г. Вырабатывается эндокринными клетками слизистой оболочки антрального отдела желудка. Стимулирует секрецию к-ты в желудке. Лек. ср-ва получ. синтезом биологически активных фрагментов Г. и их аналогов. [c.120]

    К пептидным гормонам относятся инсулин, продуцируемый поджелудочной железой, регулирующий метаболизм углеводов, жиров и белков, содержащий 51 аминокислотный остаток секретин, вырабатываемый в желудочно-кишечном тракте, определяющий секреторную функцию желудочно-кишечного тракта, содержащий 21 аминокислотный остаток в передней доле гипофиза вырабатываются адренокор-тикотропин (34 аминокислоты), контролирующий активность коры надпочечников, пролактин (198 аминокислот), влияющий на рост грудных желез и секрецию молока в задней доле гипофиза вырабатываются вазопрессин (9 аминокислот), действующий как диуретик и сосудосуживающее, и окси-тоцин (9 аминокислот), стимулирующий сокращение гладкой мускулатуры. Это только иллюстративный перечень гормонов пептидной структуры — их значительно больше, многие из них еще изучены не полностью, как в плане строения, так и функциональности. Особенно важно и проблематично исследование связи их строения с активностью. Данные по связи структура — активность позволяют иногда получать синтетические полипептиды с активностью, превосходящей природные. Так, варьируя аминокислотный состав нейрогипофизных гормонов (схема 4.4.1) было получено около 200 аналогов, из которых один, [4-ТИг]-оксито-цин оказался высокоактивным. [c.81]

    Правилами ШРАС/ШВ [12] приняты английские трехбуквенные сокращения тривиальных названий аминокислот, начинающиеся с прописной буквы Gly, Ala, Туг и т. д. (применяемые либо для всей молекулы аминокислоты, либо для ее радикала) особенно часто такие сокращения применяются для описания аминокислотной последовательности в пептидах и белках. Разрешена также [13] и однобуквенная система сокращений, но она применяется гораздо реже. Имеются также правила номенклатуры, касающиеся часто применяемых сокращений для синтетических пептидов [14], для синтетических модификаций природных пептидов [15], пептидных гормонов [16] и белков, содержащих железо и серу [17]. [c.187]


    Хроматографический анализ органических веществ развивался попутно с хроматографией неорганических веществ. В 1935—1936 гг. появились первые сообщения об успешном применении метода Цвета в анализе синтетических красителей. Из жидкофазных вариантов хроматографии наиболее широкое применение в органической и биологической химии получила бумажная хроматография. Это тонкий микрометод, позволяющий разделять смеси нескольких десятков компонентов на полоске пористой бумаги, которая выполняет роль хроматографической колонки. Хроматограмма получается в виде пятен, которые имеют окраску, соответствующую природной окраске разделяемых компонентов смеси. При анализу бесцветных веществ пятна появляются на бумаге после опрыскивания ее подходящим реактивом. Например, при анализе аминокислотного состава белков после их гидролиза бумагу опрыски- [c.10]

    Последние десятилетия ознаменовались рядом новых исследований, которые привели вначале к синтезу природных биологически активных полипептидов, содержащих сравнительно небольшое число аминокислотных звеньев . И, наконец, совсем недавно (1964) осуществлен первый синтез белка — уже упомянутого на стр. 293 инсулина, строение которого было установлено лишь немногим более 10 лет назад. [c.294]

    Хроматографический анализ органических веществ развивался попутно с хроматографией неорганических веществ. В 1935— 1936 гг. появились первые сообщения об успешном применении метода Цвета в анализе синтетических красителей. Из жидкофазных вариантов хроматографии наиболее широкое применение в органической и биологической химии получила бумажная хроматография. Это тонкий микрометод, позволяющий разделять смеси нескольких десятков компонентов на полоске пористой бумаги, которая выполняет роль хроматографической колонки. Хроматограмма получается в виде пятен, окраска которых соответствует природной окраске разделяемых компонентов смеси. При анализе бесцветных веществ пятна проявляют, опрыскивая бумагу реактивом, образующим с разделяемыми компонентами окрашенные соединения. Например, при определении аминокислотного состава белков после их гидролиза бумагу опрыскивают раствором нин-гидрина, в результате чего на поверхности бумаги появляются пятна розового цвета, соответствующие индивидуальным аминокислотам (см. рис. 1.2). Если разделяемые бесцветные вещества обладают способностью к флуоресценции, бумагу облучают ультрафиолетовыми лучами (кварцевой или ртутной лампой) и тогда хроматограмма становится видимой. Этот случай можно наблюдать при разделении смеси антрахинонов, пятна которых в ультра- [c.9]

    Первой задачей при определении строения природных полипептидов и белков является установление их аминокислотного состава. Основным методом для этого и сейчас служит гидролиз. Его можно проводить тремя способами обработкой белка 1или полипептида кислотой, щелочью или ферментами. Из этих трех возможных методов самым распространенным является кислотный гидролиз Выбор последнего обусловлен тем, что кислоты по сравнению со щелочами вызывают меньшее число побочных процессов, а в сравнении с ферментами проводят гидролиз более полно. Чаще всего пользуются 8N серной кислотой или 20%-ной соляной кислотой. В процессе кислотного гидролиза ряд аминокислот подвергается вторичным реакциям. Так, некоторые из аминокислот дезаминируются, распадаясь до оксикислоты и аммиака (гидролитическое дезаминирование) [c.477]

    Итак, в соответствии с приведенным выше определением природные пептиды построены из аминокислотных остатков, которые связаны, как правило, а-пептидными связями. [c.87]

    История исследований белков, по сравнению с другими классами природных соединений, наиболее богата событиями и открытиями, поскольку эти вещества вездесущи в живой природе, очень многообразны и наиболее сложны по структуре. Кроме того, их сложность и большие молекулярные размеры сочетаются с низкой устойчивостью и трудностью индивидуального выделения. Но к настоящему времени многие барьеры на этом пути преодолены. Достаточно быстро и надежно хроматографически определяется аминокислотный состав белков и последовательность их соединения между собой рентгеноструктурный анализ позволяет установить пространственную структуру тех белковых молекул, которые удается получить в виде кристаллов различными вариантами метода ЯМР успешно исследуется поведение белков в растворах, в процессах комплексообразования, т.е. в ситуации, близкой к той, которая имеет место в живой клетке. В настоящее время принято различать четыре структурных уровня в архитектуре белковых молекул первичная,вторичная,третичная и четвертичная структуры белков. [c.94]

    Природные высокомолекулярные соединения. Обширную и исключительно важную группу природных высокомолекулярных соединений (биополимеров) составляют белки. Белковые макромолекулы построены из остатков аминокислот, соединенных друг с другом пептидными (кетоимидными) связями —СО—ЫН—. В цепь белковой молекулы входят аминокислотные остатки, содержащие карбоксильные груп- [c.196]

    Все изложенное показывает, с какими трудностями связано изучение строения белковых веществ. Однако за несколько последних десятилетий наука в этом направлении значительно продвинулась впе )ед. Разработаны методы, дающие возможность устанавливать аминокислотный состав белков, определять, какие именно аминокислоты находятся на концах полипептидных цепей того или иного белка. Для некоторых природных гюлипептндов, родственных белкам, и для некоторых белков, имеющих важное биологическое значение, не только точно установлено, из каких аминокислот они построены, но и выяснена последовательность, в которой эти аминокислоты соединяются друг с другом. [c.293]

    Последовательность расположения аминокислотных остатков в полипептидной цепи создает первичную структуру белка она установлена в настоящее время для ряда природных белков. Осуществлен и синтез ряда белков, например инсулина (51 аминокислота), рибонуклеазы (124 аминокислотных остатка). Синтезы подобного рода требуют последовательного осуществления сотен химических операций. Большую помощь оказывает при этом метод твердофазного синтеза, предложенный Мэрифильдом в 1963 г. полипептидная цепь постепенно наращивается на полимерном носителе (полисти-рольной смоле) и лишь после завершения синтеза снимается е носителя. [c.635]

    Сразу же стало понятно, что возможность очистки (продукта) после каждой реакции путем простого фильтрования и промывки, и то, что все реакции можно проводить в одном реакционном сосуде, составляют идеальные предпосьшки для механизации и автоматизации процесса [5d). Действительно, всего три года потребовалось для разработки автоматической процедуры и аппаратуры, позволяющих выполнять программируемый синтез полипептидов с заданной последовательностью аминокислотных остатков, Первоначально и сама аппаратура (емкости, реакционные сосуды, шланги), и система управления (перфоленты и таймеры) бьыи очень примитивны. Тем не менее, мощь и эффективность общей стратегии были убедительно продемонстрированы рядом пептидных синтезов, выполненных на этом почти пещерном оборудовании. Так, например, с помошью такой полуавтоматической процедуры был успешно вьшолнен синтез природного гормона инсулина, построенного из двух полипептидных цепей (состоящих из 30 и 21 аминокислотных остатков), связанных дисульфидным мостиком [5е]. [c.302]

    Существующие представления о принципах структурной организации белка и путях многостадийного процесса самосборки полипептидной цепи можно отнести к трем альтернативным точкам зрения. Каждой из них отвечает свой специфический набор экспериментальных и теоретических методов, свой особый подход к изучению этого уникального природного явления и своя возможность в достижении конечной цели - количественного описания механизма сборки и расчета координат атомов нативной трехмерной структуры и динамических конформационных свойств белковой молекулы по известной аминокислотной последовательности. Обсуждению современного состояния и перспектив развития трех направлений исследований структурной самоорганизации белка, условно названных эмпирическим, теоретическим (аЬ initio) и генетическим, уделено в этой книге основное внимание. [c.6]

    Его адреностимулирующая активность оказалась очень низкой, примерно одна тысячная активности АКТГ. Удлинение цепи до 16 единиц (1960) не привело к повышению активности. Однако группа Ли нашла (1960), что пептид, содержащий 19 аминокислотных остатков, имеет активность, равную 30% активности АКТГ. Наконец, группе Гофмана удалось в 1961 г. синтезировать весь р-кортикотропин (23 остатка мол. вес 3200), активность которого не отличалась от активности природного гормона. В дальнейшем (1962) Гофман предположил, что структурные элементы, необходимые для полной адренокортикотроп-ной активности, находятся в юй части молекулы АКТГ, которая охватывает первые 20 остатков аминокислот с N-конца молекулы. [c.702]

    Он обладает бактериостатическим и бактерицидным действием и применяется для лечения ран, ожогов, воспалительных заболеваний, а также в качестве противозачаточного средства. Этот антибактериальный пептид интересен также тем, что в его составе фенилаланин имеет D-форму. В последнее время было вьщелено несколько небольших природных пептидов (из кожи древесных лягушек, ганглий улиток, яда пауков), которые содержат одну или две D-аминокислоты. Было подтверждено, что D-форма аминокислотного остатка в такого рода пептидах резко увеличивает их устойчивость к гидролитическому действию эк-30- и эндопротеаз. Этот факт учитывается при создании олиго-пептидных лекарственных веществ пролонгированного действия. [c.39]

    Рассмотрение принципа действия и особенностей использования аминокислотного анализатора начнем с того, что сформулируем представления об анализируемом препарате. Для наиболее интересного случая — анализа состава белка — им является смесь 20 природных аминокислот. Все компоненты этой смеси представляют одинаковый интерес, подлежат полному разделению и количественной оценке. Интервал. молекулярных масс простирается ог 75 (Gly) до 204 (Тгр), диапазон значений р1 — от 2,97 (Glu) до 10,76 (Arg). Различия в стеиени гидрофобности тоже выражены сильно от гидрофильных дикарбоновых и оксикислот до весьма гидрофобных, несущих довольно протял<енные алифатические и ароматические боковые группы. Заметим сразу, что такие различия должны облегчить задачу хроматографического разделенпя, но вряд лн позволят обойтись без ступенчатой смены элюентов. В обычных условиях хроматографии все алшнокислоты достаточно устойчивы, но следует обратить внимание с этой точки зрения и на предшествующий хроматографии этап исчерпывающего гидролиза белков и пептидов (от него будут зависеть и результаты анализа). Агрегация аминокислот маловероятна, за исключением возможности окисления цистеинов до цистинов. Не-специфическая сорбция за счет гидрофобных взаимодействий с материалом матрицы безусловно возможна, но здесь она будет использоваться в интересах фракционирования. [c.515]

    Вторую группу природных биологически важных соединений двойственной принадлежности по классам, после гликолипидов образуют липопепти-ды, молекулы которых представлены ковалентно связанными липидным и полипептидным фрагментами. Со стороны липидной части, эта связь может быть рассмотрена как М-замещенная амидная, где амидный фрагмент образуется взаимодействием концевой аминогруппы полипептида с карбоксильной группой жирной кислоты. Типичное содержание аминокислотных остатков в полипептидной цепи — от 4 до 16, в тех же случаях, когда содержание этих остатков велико — соединения классифицируются как липо-протеины (схема 5.3.10). [c.128]

    Гомополимеры, например полиглицин или поли-(ь-валин), используют в качестве моделей для исследования. Природные гетерополимеры — это полипептиды с очеиь сложной аминокислотной последовательностью, самое пезначителыюе изменение которой приводит к нарушению или даже полному исчезиовепию биологической активности полипептида. Поэтому химики. [c.399]

    В hem. Abstr. произвольно принято считать белками природные полипептиды, содержащие более 50 аминокислотных остатков. Белок, для которого известна аминокислотная последовательность, индексируется как химическое соединение под своим тривиальным названием с дополнительной информацией, как то помещаемым в скобках названием биологического вида. [c.265]

    Следующей задачей при определении строения пептидов является установление характера связи и последовательности аминокислотных остатков в молекуле пептида или белка. Эта задача, трудно выполнимая в настоящее время для белков с большим молекулярным весом, облегчается тем, что в природе встречается значительное число относительно низкомолекулярных соединений, представляющих собою пептиды. Виланд предлагает различать три группы природных пептидов олигопептиды, состоящие из 2—10 аминокис/ют, полипептиды, состоящие из 10—100 аминокислот, и макропептиды, к которым относятся собственно белки. Изучение природных пептидов представляет собой важный этап в подходе к изучению строения белка. Исследование обычно начинают с определения числа цепей, входящих в состав объекта изучения. Для этого пользуются одним из ранее приведенных методов, например диннтрофенилированием, действием азотистой кислогы или аминопептидазы для определения Н-концевой аминокислоты и восстановлением, гидразинолизом или действием карбоксипептидазы для определения С-концевого остатка (см. стр. 510 и далее). [c.514]

    Способность к специфическим взаимодействиям определяется наличием в молекулах порфиринов и металлопорфиринов разнообразных центров специфической сольватации, к которым, в первую очередь, следует отнести сопряженную л-систему макрокольца, реакционный центр лиганда порфирина, центральный атом металла в составе металлопорфиринов, гетероатомы, входящие в состав периферийных заместителей. В биологических структурах молекулы металлопорфиринов, как правило, принимают участие в нескольких типах последовательных или параллельных специфических взаимодействий, которые могут иметь конкурентный характер. Например, я-система и периферийные заместители железо(П)протопорфирина - простетического фрагмента гемоглобина и цитохромов вступают в специфические взаимодействия с алифитическими и ароматическими радикалами аминокислотных остатков протеина или других органических молекул (лекарственных препаратов, токсинов и т.д.), которые оказывают влияние на координационные свойства центрального атома железа и биологическую активность хромопротеина в целом [1, 2]. При этом существенное влияние имеют pH и электролитный состав среды, температура [3]. Очевидно, что изучение природных макрообъектов и анализ результатов, полученных для таких сложных многокомпонентных систем, в большинстве случаев представляет трудноразрешимую задачу и не позволяет выявить роль каждого компонента. Поэтому исследования, позволяющие вскрыть факторы, влияющие на активность металлопорфиринов и механизмы их биохимического поведения, проводятся на упрощенных модельных системах. Эти системы содержат металлопорфирин и активный молекулярный лиганд, помещенные [c.298]

    По числу аминокислот, содержащихся в пептиде, различают ди-, три-, тетра-, пента-,. .., окта-, нона-, декапептиды и т. д. Чтобы избежать проблемы, связанной с греческой нумерацией длинноцепочечных пептидов, Бо-дански предложил количество аминокислотных остатков пептида обозначать арабской цифрой и помещать перед словом пептид . Например, 7-пептид вместо гептапептид, 10-пептид вместо декапептид. Пептиды, в молекулах которых меньше десяти аминокислотных остатков, формально относятся к олигопептидам, пептиды, построенные из большего числа аминокислотных остатков (до - 100),— к полипептидам. Различие между полипептидами и белками (макропептидами) чрезвычайно проблематично. Исторически сложилось так, что границей между полипептидами и белками считают соединения с молекулярной массой -10 ООО, т. е. состоящие примерно из 100 остатков аминокислот. Такой принцип классификации основан на способности к диализу через природные мембраны. [c.84]

    Методы выделения, очистки и аналитические характеристики пептидов описаны подробно в разд. 3.3. Изучение связи между строением и биологической функцией пептидов ведет к познаванию молекулярного механизма их действия. При этом главное внимание обращается на выяснение активного центра и определение аминокислотной последовательности, которая ответственна за рецепторное связывание, транспорт и иммунологическое поведение. Большой практический интерес имеет также модификация природных пептидов для пролонгирования их действия и расширения практического применения. Такого рода исследования можно проводить только тогда, когда соответствующий природный пептид имеется в достаточном количестве. Необходимые для изучения пептиды можно получать путем частичного ферментативного расщепления экзопептидазами или эндопептидазами или же с помощью специфических химических методов расщепления (бромцианом или Ы-бромсукцинимидом) можно также использовать замещение, элиминирование или превращение функциональных групп соответствующих пептидов. Возможности модификации природных пептидов ограничены тем, что часто исследователь располагает лишь нанограммо-выми количествами этих веществ. [c.90]

    В-третьих, химический синтез преследует цель изменить пептиды для модификации фармакологического действия. Эта задача тесно связана с предыдущей, так как при исследовании связи между строением и активностью неизбежно выявляются новые аспекты для фармацевтического использования. Можно осуществлять различные модификации природной аминокислотной последовательности для получения веществ с улучшенными свойствами. Особый интерес обращается на пролонгирование или усиление биологического действия. В случае пептидов, проявляющих несколько эффектов, важно бывает выделить определенные из них. Путем модификации конечных амино- или карбоксильных групп можно повысить устойчивость пептида к ферментативному расщеплению. При этом следует учитывать, что не все пептиды можно одинаково подвергать химическим изменениям в связи с опасностью частичного или полного инактивирова-ния. В то время как в случае, например, вазопрессина и окситоцина замещение в К-концевой аминофункции ведет к снижению биологического дей- [c.93]

    В-четвертых, химический синтез иногда проводят из экономических соображений. Например, применяемый для терапевтических целей окситоцин в настоящее время по этой причине получается исключительно химическим синтезом. Это же относится и к некоторым другим пептидам, как, например, к АКТГ и секретину. Синтетический секретин в десять раз дешевле природного продукта, изолированного из свиных кишок. Также обстоит дело и со многими другими активными пептидами. Наряду с вопросами стоимости важную роль играет здесь также доступность пептидов, получаемых химическим синтезом, так как некоторые активные пептиды, как уже упоминалось, встречаются в природе только в нанограммовых количествах. В случае же специфических пептидов человека их получение возможно только синтетическим путем. На примере синтезов АКТГ, глю-кагона и секретина можно показать, что синтетические продукты имеют более высокую степень чистоты, чем пептиды, изолированные из природных источников. Полное разделение родственных по аминокислотной последовательности пептидов с противоположным или другого рода действием часто не всегда возможно с помощью применяемых в настоящее время методов изолирования и очистки. [c.94]

    Исследование реакций комплексообразования природных металлопорфиринов с нейтральными электронодонорными (-акцепторными) молекулярными лигандами представляет несомненный интерес как в теоретическом, так и в практическом плане. Многообразие полезных функций металлопорфиринов в первую очередь связано с их координационными свойствами, под которыми понимают дополнительную координацию заряженных или нейтральных частиц на центральном атоме металла. Механизмы протекания данных процессов в значительной степени определяются особенностями формирования сольватного окружения металлопорфиринов в биологических структурах и модельных растворах. В биоструктурах молекулы металлопорфиринов окружены псевдосольватной оболочкой, сформированной за счет универсальных и специфических взаимодействий с гидрофобными и гидрофильными фрагментами аминокислотных остатков белковой части хромопротеинов. Так, Ре(П)протопорфирин, являющийся простетической группой хромопротеинов (гемоглобин, миоглобин, цитохромы, пероксидазы) живых организмов [1], за чет электростатических взаимодействий пропионовых остатков связан с полярными фрагментами белка. При этом центральный атом металла вступает в дополнительное координационное взаимодействие с имидазольным остатком проксимального гистидина [33]. В гемоглобине (рис. 6.5) щестое координационное место остается открытым для взаимодействия с молекулами газообразных веществ (О2, СО, N0) и ионов окислителей (N02, Оз). В цитохромах (рис. 6.5) как пятое, так и шестое координационные места заняты за счет донорно-акцепторного взаимодействия с аминокислотными электронодонорными радикалами (например, гистидина и метионина). В результате проявляется новое свойство металлопорфирина - способность участвовать в легкообратимом окислительновосстановительном процессе переноса электрона, сопровождающемся обратимым изменением степени окисления иона железа Ре " Ре . [c.312]


Смотреть страницы где упоминается термин ДНБ-аминокислотные природные: [c.268]    [c.40]    [c.341]    [c.421]    [c.420]    [c.180]    [c.12]    [c.25]    [c.3]    [c.387]    [c.387]    [c.265]    [c.491]    [c.13]    [c.278]    [c.297]   
Асимметрический синтез (1987) -- [ c.135 ]




ПОИСК







© 2024 chem21.info Реклама на сайте