Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контроль активности генов эукариот

    Все ранние работы по белкам-репрессорам были выполнены на бактериях. Выяснилось, что и у лактозного, и у триптофанового оперона активность этих белков контролируется посредством обратимого связывания небольших специфических молекул. В клетках эукариот белки-регуляторы гоже находятся под контролем небольших сигнальных молекул, таких, например, как сАМР. Эти молекулы осуществляют свое воздействие непрямым путем, влияя на фосфорилирование и дефосфорилирование белка. Хотя у бактерий фосфорилирование не играет такой важной роли в регуляции, и у них существует одна хорошо изученная система контроля, зависящая от фосфорилирования белков. На примере этой системы мы рассмотрим некоторые аспекты регуляции генов, знание которых способствует пониманию более сложной системы регуляции высших эукариот. [c.188]


    Гены, направляющие развитие организмов 212 6. Метилирование как способ контроля активности генов эукариот 218 Литература 221 [c.353]

    В течение многих лет оставалось неизвестным, можно ли применять эту модель контроля генетической активности к клеткам эукариот. Известно, что ДНК эукариотической клетки упакована с помощью гистоновых белков в нуклеосомы, масса которых равна массе ДНК. Присутствие нуклеосом предполагает существование каких-то иных путей регуляции генов. Об этом же свидетельствует и гот факт, что у эукариот регуляторные белки часто связываются в участках, удаленных на тысячи нуклеотидных пар от промотора, на который они [c.183]

    Рис 10-2 Пять уровней контроля генной экспрессии у эукариот. Поспе синтеза белка его активность может контролироваться за счет регулируемой деградации (О), обратимых модификаций (например, фосфорилирования) и путем перемещения молекулы белка в определенное [c.178]

    У многоклеточных организмов дифференцировка клеток происходит в результате экспрессии разных генов одного и того же генома, хотя типы клеток на удивление мало отличаются друг от друга по содержанию белков. Экспрессия больщинства генов контролируется на уровне транскрипции, что не исключает существенной роли посттранскрипциоиного контроля. Контроль на уровне транскрипции зависит от регуляторных белков, связывающихся с определенными последовательностями ДНК. В результате присоединения таких белков соответствующие гены либо включаются (позитивный контроль) либо выключаются (негативный контроль). Гены высших эукариот обычно регулируются путем комбинационного воздействия нескольких белков-регуляторов, осуществляющих позитивный и негативный контроль. Главные регуляторные белки играют в системе регуляции активности генов особую роль благодаря тому, что они влияют на активность сразу многих генов например, экспрессия гена туо D1 может превратить фибробласт в миобласт. [c.183]

    Представляется вероятным, что все механизмы, используемые бактерией для контроля активности РНК-нолимеразы, реализуются и в эукариотических клетках (см. рис. 10-19). Однако образование стабильного транскрипционного комплекса на ДНК с участием ТАТА-фактора несомненно усложняет регуляцию генов у эукариот. На основании опытов in vitro можно сделать вывод, что основная фунгсция некоторых активирующих белков у эукариот состоит в том, что они помогают ТАТА-фактору соединиться с ДНК в области промотора. [c.191]

    Тот факт, что белки SIR подавляют и транскрипцию, и действие НО-эндонуклеазы, свидетельствует о том, что эти белки могут вызывать изменения в структуре хроматина дрожжей, способствуя закрытию целых областей хроматина, лежащих по соседству в результате эти области становятся недоступными для самых разных ферментов. Два других наблюдения указывают на то, что в механизме действия сайленсеров есть нечто необычное. Дпя проявления репрессии необходима репликация ДНК, а последовательность, необходимая для инициации репликации (ARS), является существенной составной частью области сайленсера. Подробное изучение этого нового механизма контроля генетической активности может в какой-то мере прояснить влияние структуры хроматина на активность генов в клетках высших эукариот. [c.203]


    Подобные результаты свидетельствуют в пользу двухступенчатой схемы индукции транскрипции генов высших эукариот. Па стадии I весь хроматин в области, содержащей десятки тысяч нуклеотидных пар, превращается в относительно деконденсированную активную форму (рис. 10-40). Эта стадия может запускаться определенным типом белка-регулятора, который вызывает структурное изменение в близлежащем хроматине. Такое изменение распространяется от домен-контролируюшего участка через всю петлю этого домена хроматина. Па стадии 2 белки-регуляторы, которые действуют на энхансеры и лежащие перед промотором элементы, регулируют фанскрипцию определенных генов, локализованных внутри области экспонированного активного хроматина. Благодаря такому местному контролю сперва в желточном мешке зародыша экспрессируется ген 8-глобина человека, затем в печени эмбриона экспрессируются два гена у-глобина и, наконец, ко времени рождения включаются гены Р-глобина (рис. 10-39,Б). [c.212]

    Наиболее подробно изучена регуляция генов, контролирующих усвоение галактозы и синтеза изозимов кислых фосфатаз у Sa h. erevisiae. Показано, что эти системы регуляции действуют как на уровне транскрипции, так и на посттранскрипционном уровне. При этом осуществляется многоступенчатая, или каскадная, регуляция, в которой участвуют элементы позитивного и негативного контроля, последовательно регулирующие активность друг друга. Целостная схема регуляции действия гена у эукариот пока не построена ни для одной системы. [c.424]

    Переключение типа спаривания инициируется сайт-специфической эвдонуклеазой (НО-эндонуклеазой), являющейся продуктом гена НО, Этот фермент делает двухцепочечный разрез в ДНК локуса МАТ, в результате эта область вырезается и затем ре синтезируется, при этом матрицей служит молчащий ген противоположного типа спаривания (рис. 10-30). Транскрипция гена НО, определяющего, когда и где происходит переключение, строго контр о Л1 у ется. С помощью генетического анализа было показано, что контроль обеспечивают по меньщей мере щесть регуляторных генов (от SWI 1 до SWI 6). В связи с тем, что при почковании дрожжевые клетки делятся асимметрично, одна из двух образовавшихся клеток больше ( материнская ), чем другая ( дочерняя ). Большинство материнских клеток в ходе дальнейшего роста переключает тип спаривания, а вновь образовавшиеся дочерние клетки (возникающие из почки) не синтезируют продукт гена НО и не способны переключаться до тех пор, пока г )и делении они не станут материнскими клетками (рис. 10-31). Асимметрия переключения оказалось связанной с асимметричным наследованием белка SWI 5, который Г5)исоединяется к ДНК перед геном НО и необходим для его транскрипции. Полагают, что белок SWI5 (либо его активная форма) наследуется лишь материнской клеткой Остается непонятным, почему этого белка нет в почке, но характер его наследования может служить моделью асимметричной сегрегации некоторых признаков, наблюдаемой у высших эукариот. [c.202]


Смотреть страницы где упоминается термин Контроль активности генов эукариот: [c.122]    [c.132]    [c.197]    [c.203]    [c.127]    [c.197]    [c.220]    [c.220]    [c.139]    [c.202]    [c.234]    [c.188]    [c.234]   
Молекулярная биология (1990) -- [ c.218 , c.221 ]




ПОИСК







© 2025 chem21.info Реклама на сайте