Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регуляторный ген контролирует структурные гены

    ОПЕРОН. Единица транскрипции и регуляции у бактерий, состоящая из структурных генов, регуляторного гена (генов) и контролирующих элементов, узнаваемых продуктами регуляторного гена. [c.524]

    Теория, разработанная Жакобом и Моно, дает понятие о механизме индукции ферментов. Синтез ферментов, как уже было сказано выще, определяют участки молекулы ДНК — цистроны, или структурные гены. Помимо них в молекуле ДНК имеются также регуляторные гены, контролирующие деятельность структурных генов. Гены-регуляторы вызывают или прекращают синтез особых веществ белковой природы — репрессоров. Они специфически блокируют соответствующий структурный ген, прекращая таким образом синтез и-РНК и вместе с этим синтез определенного ферментного белка (рис. 19). [c.46]


    Регуляторный ген контролирует структурные гены [c.177]

    Было установлено, что экспрессия структурных генов (т.е. генов, кодирующих синтез белка) контролируется регуляторным геном. Последний определяет синтез репрессора, функция которого состоит в блокировании экспрессии структурного гена. В присутствии индуктора образуется комплекс репрессор-индуктор, и таким образом репрессор инактивируется, он больше не может влиять на структурные гены, и начинается экспрессия структурного гена, т.е. биосинтез белка. [c.60]

    Примерно 70% ДНК самых разнообразных эукариот представляет собой уникальные последовательности. Как расположены эти уникальные гены относительно повторяющихся последовательностей Анализ эукариотических хромосом различными методами показал, что уникалыше последовательности обычно чередуются с умеренно повторяющимися последовательностями, длина которых в типичном случае составляет 300 пар оснований. Существует несколько тысяч различных умеренно повторяющихся последовательностей. Они повторяются в геноме несколько сот раз и в совокупности составляют 20% ДНК. Функция рассеянных, умеренно повторяющихся последовательностей ДНК неизвестна. Возможно, они служат участками связывания специфических регуляторных макромолекул, которые могут контролировать транскрипцию соседних уникальных структурных генов. [c.145]

    Регуляторные гены ответственны за контроль выражения кластеров структурных генов, осуществляя его обычно путем синтеза белков, контролирующих транскрипцию. Регуляторные белки выполняют эту функцию, связываясь с определенными сайтами в ДНК. [c.178]

    Мы можем отличить структурные гены от регуляторных по эффекту мутаций. Мутация в структурном гене ведет к отсутствию в клетке определенного белка, кодируемого этим геном. Мутация же в регуляторном гене влияет на выражение всех структурных генов, которые он контролирует. Природа такого влияния зависит от типа регуляции. [c.178]

    Выражение /ас-генов контролируется по типу негативной регуляции. Из этого следует, что гены транскрибируются при условии, что они не выключены регуляторным белком. Следовательно, при мутации, инактивирующей репрессор, гены остаются в активном состоянии. Поскольку функция регулятора сводится к предотвращению выражения структурных генов, он был назван бел-ком-репрессором. [c.178]

    Концепцию, согласно которой два разных класса генов различаются по своим функциям, сформулировали Жакоб и Моно в 1961 г. при создании классической модели оперона. Они определили оперон как полную единицу выражения генов, включающую структурные гены, регуляторный ген (или гены) и контролирующие элементы (сайты действия регуляторных белков). Каждый отдельный оперон может быть охарактеризован системой взаимоотношений между регуляторными белками и их сайтами-мишенями. Это можно рассматривать как регуляторную систему. Первая модель была создана для 1ас-оперона, который до настоящего времени остается наиболее полно охарактеризованным опероном, однако подобные принципы были использованы для создания аналогичных систем в случае других оперонов. [c.178]


Рис. 39.8. Схема организации регуляторных блоков типичного эукариотического гена. В функциональном гене можно выделить регуляторную и структурную области, разделенные сайтом инициации транскрипции (показан стрелкой). Регуляторная область состоит из двух элементов, определяющих базовый уровень экспрессии. Проксимальный элемент, ТАТА-бокс, направляет РНК-полимеразу к сайту инициации транскрипции и, следовательно, определяет точность начала синтеза РНК. Другой регуляторный элемент (upstream) контролирует частоту, с которой происходит инициация транскрипции. Наиболее изученным регуляторным элементом этого класса является так называемый СААТ-бокс, однако в других генах могут использоваться и иные элементы. В регуляции экспрессии участвуют также энхансеры и сайленсеры— элементы, усиливающие или ослабляющие базовый уровень транскрипции, и элементы, регулирующие экспрессию определенных генов в ответ на различные сигналы (включая гормоны, тепловой шок, ионы металлов, некоторые химические препараты). Сюда же относятся и функционально подобные элементы, обусловливающие тканевую специфичность экспрессии генов. Возможно, что два последних блока регуляторных элементов функционально перекрываются (показано соединяющей линией). Зависимость функции элемента данного типа от ориентации указана стрелками. Так, проксимальный элемент обязательно должен быть в ориентации 5 - У. СААТ-бокс и аналогичные ему элементы наиболее эффективно работают в ориентации 5 - 3, но некоторые функционируют в обеих ориентациях. Разорванные линии между квадратами указывают на то, что положения данных элементов относительно сайта инициации транскрипции строго не фиксированы. В действительности элементы регуляции экспрессии могут быть расположены также и правее (т. е. ближе к З -концу) сайта Рис. 39.8. <a href="/info/32751">Схема организации</a> регуляторных блоков типичного <a href="/info/1324122">эукариотического гена</a>. В <a href="/info/1304385">функциональном гене</a> можно выделить регуляторную и <a href="/info/1784850">структурную области</a>, разделенные <a href="/info/1868768">сайтом инициации транскрипции</a> (показан стрелкой). <a href="/info/1902219">Регуляторная область</a> состоит из <a href="/info/1696521">двух</a> элементов, определяющих базовый <a href="/info/1325215">уровень экспрессии</a>. <a href="/info/1409396">Проксимальный элемент</a>, <a href="/info/1339595">ТАТА-бокс</a>, направляет РНК-полимеразу к <a href="/info/1868768">сайту инициации транскрипции</a> и, следовательно, определяет точность <a href="/info/1792394">начала синтеза</a> РНК. Другой <a href="/info/33271">регуляторный элемент</a> (upstream) контролирует частоту, с <a href="/info/1481749">которой происходит</a> <a href="/info/32953">инициация транскрипции</a>. Наиболее изученным <a href="/info/33271">регуляторным элементом</a> этого класса является так называемый <a href="/info/1385606">СААТ-бокс</a>, однако в <a href="/info/1854974">других генах</a> могут использоваться и иные элементы. В <a href="/info/32970">регуляции экспрессии</a> участвуют <a href="/info/188498">также энхансеры</a> и <a href="/info/1339563">сайленсеры</a>— элементы, усиливающие или ослабляющие базовый <a href="/info/1875791">уровень транскрипции</a>, и элементы, регулирующие <a href="/info/1911956">экспрессию определенных генов</a> в ответ на различные сигналы (включая гормоны, тепловой шок, <a href="/info/31475">ионы металлов</a>, <a href="/info/652415">некоторые химические</a> препараты). Сюда же относятся и функционально подобные элементы, обусловливающие <a href="/info/96860">тканевую специфичность</a> <a href="/info/33345">экспрессии генов</a>. Возможно, что два последних блока <a href="/info/33271">регуляторных элементов</a> функционально перекрываются (показано соединяющей линией). <a href="/info/1220884">Зависимость функции</a> <a href="/info/1655796">элемента данного</a> типа от ориентации указана стрелками. Так, <a href="/info/1409396">проксимальный элемент</a> обязательно должен быть в ориентации 5 - У. <a href="/info/1385606">СААТ-бокс</a> и аналогичные ему элементы <a href="/info/1814122">наиболее эффективно</a> работают в ориентации 5 - 3, но некоторые функционируют в обеих ориентациях. Разорванные <a href="/info/404201">линии между</a> квадратами указывают на то, что <a href="/info/1408922">положения данных</a> <a href="/info/2888">элементов относительно</a> <a href="/info/1868768">сайта инициации транскрипции</a> строго не фиксированы. В действительности элементы <a href="/info/32970">регуляции экспрессии</a> могут быть расположены также и правее (т. е. ближе к З -концу) сайта
    Потеря способности к продуцированию исходных антибиотиков у микроорганизма, полученного в процессе слияния протопластов, возможно, связана с изменениями экспрессии регуляторных генов, ответственных за биосинтез антибиотиков родительскими штаммами, или же с изменениями структурных генов, контролирующих биосинтетические пути. [c.152]

    Продукт регуляторного гена, агаС, контролирующего араби-нозный оперон, может находиться как в состоянии репрессора, так и в состоянии активатора. В форме репрессора он присоединяется к оператору и блокирует транскрипцию структурных генов. Соединяясь с индуктором оперона, арабинозой, белок-регу-лятор переходит в форму активатора и, взаимодействуя с про-моторным участком (инициатором), стимулирует транскрипцию оперона. [c.19]

    Широко распространенное клонирование регуляторных и структурных генов, контролирующих биосинтез различных антибиотиков, дало возможность использования их в целях повышения на один-два порядка антибиотической продуктивности многих штаммов стрептомицетов. Например, введение регуляторных генов в дикий штамм продуцента дауномицина S. peu eti us способно повысить биосинтез этого антибиотика в десятки раз. [c.151]

    Соав и Саламини [158] выяснили, что накопление зеина у кукурузы контролируют регуляторные гены. На основе изучения коллекции мутантов с измененным содержанием лизина (ген опейк и 2) или с разной степенью накопления зеина они предлагают следующую схему каскадной регуляции ген Ог активирует ген Об, который соответствует структурному гену белка В32 это играет положительную роль в накоплении зеина. Такая модель каскадной регуляции основывается на концепции иерархии между регуляторными генами. [c.61]

    Оперон — единица генетической регуляторной структуры, в состав которой входят один или несколько связагкных между собой структурных генов, а также промоторный, операторный и другие регуляторные участки, контролирующие транскрипцию оперона. [c.464]

    Регуляторный ген lad расположен сразу же слева от группы структурных генов. Однако благодаря тому, что он детерминирует транс-диффундирующий продукт, нет необходимости в его близкой локализации к структурным генам. В самом деле, как мы уже видели, ген lad, находясь в составе независимой молекулы ДНК, способен контролировать группу генов la ZYA, расположенных в бактериальной хромосоме (ситуация может быть и обратной). У других оперонов Е. oli регуляторный ген действительно локализован на некотором расстоянии от структурных генов. Можно, однако, предположить, что имеется преимущество в локализации гена-регулятора вблизи структурных генов, выражающееся в том, что он функционирует только вместе с ними. Поэтому его отделение не имеет смысла. [c.179]


    Рис. 15.12. аго-Оперон состоит из регуляторного гена агаС, отделенного от группы структурных генов araBAD регуляторной областью (несцепленные гены araF и агаЕ также контролируются агаС-геном). [c.199]

    ЦИИ неавтономного элемента. Супрессор подавляет выражение структурного гена в этом локусе. Мутатор проявляет способность транспозировать, в результате чего ген восстанавливает полную активность. Оба свойства принадлежат. элементу, так как они переносятся вместе однако обнаружены мутанты, фенотип которых свидетельствует о возможности их разделения. Поскольку способность неавтономного элемента супрессировать смежные функции контролируется автономным элементом в транс-положении, вряд ли этот эффект обусловлен только внедрением неавтономного элемента вероятно, он должен иметь специфическую регуляторную основу. [c.482]

    Принципиальное различие схем, приведенных на рис. 10-43, говорит о том, как мы еще далеки от понимания процесса перехода хроматина из неактивного в активное состояние. Неизвестно, сколько существует форм хроматина и какие именно его структурные особенности приводят к тому, что некоторые области более конденсированы, чем другие. Исходя просто из функции хроматина, невозможно объяснить, почему аминокислотные последовательности гистонов (в особенности НЗ и Н4) оказываются такими консервативными. Недавно выявлены некоторые химические свойства, присущие только активному хроматину (см. разд. 9.2.10), а для отделения нуклеосом (и связанных с ними последовательностей ДНК) активного хроматина от остальных нуклеосом стали использовать моноклоналные антитела. Применяя эти методы при работе с хроматином, выделенными из трансгенных животных, в принципе возможно отличить регуляторные области, ответственные за активацию хроматина, от других участков, что несомненно должно способствовать пониманию того, как контролируются эукариотические гены. [c.215]

    Глюкокортикоиды — это класс стероидных гормонов, регулирующих экспрессию генов (см. гл. 44). При попадании молекул глюкокортикоидов в клетку млекопитающих они связываются со стероидч пе-цифичным рецептором, который претерпевает при этом конформационные изменения в цитоплазме и проникает в ядро. Комплекс глюкокортикоид— рецептор взаимодействует со специфическим рецеп-тор-связывающим сайтом ДНК в 5 -регуляторной области стероид-зависимых генов, например гена вируса рака молочной железы мыши, на расстоянии в несколько сот пар оснований от сайта инициации транскрипции. Посадка комплекса на рецептор-свя-зывающий сайт, судя по всему, приводит к более эффективному использованию промотора РНК-полимеразой, усиливая таким образом экспрессию стероид-зависимых генов. Область ДНК, связывающаяся с гормон-рецепторным комплексом, также может быть клонирована и присоединена к другому структурному гену. После встраивания таких химерных конструкций в геном культивируемых клеток млекопитающих репортерные структурные гены приобретают способность контролироваться содержанием глюкокортикоидов в среде, т.е. становятся стероид-индуцибельными генами. Постепенно укорачивая нуклеазной обработкой концы клонируемого фрагмента и вводя в него мутации, можно идентифицировать районы ДНК, которые непосредственно участвуют в связывании с гормон-рецепторным комплексом. Создается впечатление, что связывание гор-мон-рецепторного комплекса с определенным участком ДНК превращает его в активный энхансерный элемент. В ближайшем будущем мы, вероятно, сможем разобраться в молекулярном механизме точной регуляции экспрессии эукариотических генов, в частности на примере стероид-зависимых генов. [c.124]

    Первые исследования механизма генетического контроля были посвящены синтезу -галактозидазы, осуществляющей гидролиз дисахарида лактозы до моносахаридов глюкозы и галактозы в клетке Е. соИ. Опыты привели к открытию белка-репрессора лактозного оперона, включающего транскрипцию структурных генов (в данном случае, гена -галактозидазы, а также пермеазы и галактозид-транс-ацетилазы). Это достигается путем связывания репрессора с операторным участком ДНК длиной в 21 нуклеотид, перекрывающимся с последовательностью промотора. В результате блокируется доступ РНК-полимеразы к ее участку связывания и транскрипция цистронов делается невозможной. Для индукции и репрессии синтеза белка, т.е. изменения скорости процесса в противоположных направлениях, необходимо наличие в модели регуляторного механизма еще одного элемента индуктора, который должен, с одной стороны, контролировать действия белка-репрессора лактозного оперона, а с другой -быть связанным прямо или косвенно с функцией синтезируемого фермента. Такой индуктор действительно был обнаружен, и им оказался субстрат -галактозидазы лактоза, точнее, аллолактоза, близкая по строению и образующаяся в присутствии лактозы. [c.118]

    Все гены находятся в большой самовоспроизводящейся молекуле ДНК- Каждый из них представляет собой небольшой участок такой молекулы. Но по своим функциям гены неодинаковы. Одни-из них несут информацию о последовательности аминокислот белковой молекуле, т. е. определяют ее структуру, другие регулируют активность первых и контролируют тем самым процесс поступления информации от ДНК к и-РНК. Первая группа генов, получила название структурных, вторая — регуляторных. Структурные гены, контролирующие синтез ферментов в какой-то одной цепи реакций, расположены обычно рядом друг с другом. Они составляют единый блок, называемый опероном, и осуществляют последовательные этапы синтеза одного фермента, работая согласованно, как один элемент. Согласно модели строеиия хромосом,. предлол<.енноп Ф. Криком, структурная (информативная) зона опе-рона, несущая информацию для синтеза белков, расположена в междисковой части хромосомы, регуляторная л е (акцепторная) его часть входит в состав дисков. [c.159]

    Однако термин регуляторный ген в том смысле, в каком его ншользуют в современной литературе, имеет более широкий. .смысл, Регуляторные гены в строгом смысле слова противопоставляют структурным генам. Структурные гены детерминируют синтез белков, будучи более или менее эквивалентны классическим генам, тогда как регуляторные тены контролируют действие структурных генов. Разделение генов на структурные и регуляторные возникло в 1результате исследований на бак- [c.376]

    Белок TF 1П А был первым эукариотическим регуляторным полипептидом транскрипции с известной аминокислотной последовательностью, для которого удалось построит доменную структурную модель. В этом белке выявлены 9 повторяющихся, но отличающихся друг от друга доменов — пальцев , каждый из которых включает около 30 аминокислот. Домены содержат инвариантные-участки, включающие два цистеиновых и два гистидиновых остатка, связанных с ионом цинка (рис. 115). Концы разных пальцев (петли) несут варьирующие аминокислотные остатки, среди которых встречаются положительно заряженные, которые, по-видимому, способны легко взаимодействовать с ДНК. Как оказалось, подобная структура регуляторного белка закодирована в ряде других генов, кодирующих регуляторные белки эукариот. Так, ген Kruppel (калека), контролирующий развитие дрозофилы, кодирует белок, содержащий четыре подобных домена. Такие домены обнаружены и в белках — рецепторах гормонов. Предполагается, что выступающие связывающиеся с ДНК разные пальцы, соединенные друг с другом гибкими мостиками, осуществляют сразу несколько контактов с ДНК. Такая модель строения TF П1 А позволяет предполо- [c.211]

    Г. функционирует в клетке в составе генной регуляторной системы. В зависимости от выполняемой ф-ции различают структурные Г., кодирующие б. ч. белков клетки, и регуляторные, ответственные за синтез белков-регуляторов, контролирующих активность структурных Г. Механизм генетич. контроля синтеза белка окончательно не выяснен. Предполагают, что у бактерий значит, часть Г. объединена в групш.1, контролирующие отдельные метаболич. пути (серии взаимосвязанных обменных р-ций) и образующие единые функциональные блоки. [c.517]

    Типы регуляции репрессия и индукция. Репрессия означает подавление, а индукция, напротив, усиление синтеза одного или нескольких специфи-ческнх белков в результате действия на клетку какого-либо вещества, играющего регуляторную роль. Такие вещества — это низкомолекулярные соединения, часто являющиеся структурными аналогами либо конечного продукта (репрессия), либо субстрата (индукция) данного метаболического пути. Репрессибельность и индуцибельность также контролируются на генетическом уровне. Соответствующие гены гены-регуляторы) не обязательно располагаются рядом с теми оперонами, которые они контролируют. Ген-регу-лятор контролирует синтез особого продукта — апо)репрессора, взаимодействующего с оператором либо позитивно, либо негативно (фиг. 170). В пер- [c.535]

    В другом эксперименте в результате инъекции в ооцит гибридного гена, состоящего из кодирующей последовательности гена tk вируса герпеса и промоторно-регуляторной области гена металлотиоиеина 1 мыши, получена трансгенная мышь, в печени и почках которой вирус-специфический фермент продуцировался на высоком уровне. Экспрессия гена МТ-1 метал-лотионеина контролируется на транскрипционном уровне ионами тяжелых металлов и глюко-кортикоидными гормонами. Показано, что гибридный ген, состоящий из регуляторной области МТ-1 и структурной части гена tk, в ооцитах мыши подвержен регуляции ионами кадмия, как и нативный ген МТ-1. После инкубации ооцитов с ионами кадмия выявляемая в них активность тимидинкиназы вируса герпеса увеличивалась примерно в 10 раз. [c.451]

    Отбор среди таких мутантов — один из широко применяемых и эффективных методов получения и улучн1ения штаммов продуцентов первичных метаболитов. Из числа различных структурных аналогов этих веществ наиболее пригодны для селекционных целей те, которые действуют на регуляторные системы синтеза подобно природному метаболиту, но не могут выполнить основной функциональной роли этого метаболита в клетке. Так, аналог аминокислоты, добавленный к клеткам, находящимся в минимальной среде, имитирует избыток этой аминокислоты на уровне систем, контролирующих ее синтез (регуляторных ферментов и (или) регуляторных генов), но при этом пе может заменить аминокислоту в белках не способен включиться в белок или, включаясь, приводит к образованию дефектных белков, вызывая в обоих случаях голодание клетки по природной аминокислоте и останавливая рост. Добавление природной аминокислоты вместе с ее аналогом устраняет это голодание. В этих условиях клетка, прекратив синтез аминокислоты вследствие избытка последней и присутствия аналога, использует внешнюю аминокислоту для жизнедеятельности. [c.90]


Смотреть страницы где упоминается термин Регуляторный ген контролирует структурные гены: [c.377]    [c.239]    [c.318]    [c.178]    [c.123]    [c.87]    [c.118]    [c.45]    [c.477]    [c.71]    [c.115]    [c.90]    [c.121]    [c.151]   
Смотреть главы в:

Гены -> Регуляторный ген контролирует структурные гены




ПОИСК







© 2025 chem21.info Реклама на сайте