Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез белка гем-контролирующий репрессор

    Сахарный диабет. В регуляции гликолиза и глюконеогенеза большую роль играет инсулин. При недостаточности содержания инсулина возникает заболевание, которое носит название сахарный диабет повышается концентрация глюкозы в крови (гипергликемия), появляется глюкоза в моче (глюкозурия) и уменьшается содержание гликогена в печени. Мышечная ткань при этом утрачивает способность утилизировать глюкозу крови. В печени при общем снижении интенсивности биосинтетических процессов биосинтеза белков, синтеза жирных кислот из продуктов распада глюкозы—наблюдается усиленный синтез ферментов глюконеогенеза. При введении инсулина больным диабетом происходит коррекция метаболических сдвигов нормализуется проницаемость мембран мышечных клеток для глюкозы, восстанавливается соотношение между гликолизом и глюконеогенезом. Инсулин контролирует эти процессы на генетическом уровне как индуктор синтеза ключевых ферментов гликолиза гексокиназы, фосфофруктокиназы и пируваткиназы. Инсулин также индуцирует синтез гликогенсинтазы. Одновременно инсулин действует как репрессор синтеза ключевых ферментов глюконеогенеза. Следует отметить, что индукторами [c.359]


    Таким образом, структурный цистрон (ген) служит матрицей для синтеза на нем соответствующей и-РНК. Последняя передает эту структурную информацию непосредственно рибосомам, т. е. в свою очередь становится матрицей для синтеза соответствующего белка. Синтез информационной матричной РНК на матрицах структурного цистрона находится под контролем определенных участков в цистронах ДНК-операторов, которые выполняют функции как бы пускового механизма. Оператор обычно расположен на крайнем отрезке цистронов. Формирование и-РНК начинается с оператора и распространяется последовательно вдоль цистрона или групп цистронов. Структурные цистроны, расположенные рядом в цепи ДНК, имеют общий координирующий оператор, который назван опероном. Скорость формирования и-РНК на структурных цистронах контролируется другой функциональной единицей — цистроном-регулятором, или ген-регулятором. Они образуют специфические белковые продукты, называемые репрессорами. Репрессоры, с одной стороны, связаны с оператором, а с другой, обладают способностью реагировать строго спе- [c.293]

    Теория, разработанная Жакобом и Моно, дает понятие о механизме индукции ферментов. Синтез ферментов, как уже было сказано выще, определяют участки молекулы ДНК — цистроны, или структурные гены. Помимо них в молекуле ДНК имеются также регуляторные гены, контролирующие деятельность структурных генов. Гены-регуляторы вызывают или прекращают синтез особых веществ белковой природы — репрессоров. Они специфически блокируют соответствующий структурный ген, прекращая таким образом синтез и-РНК и вместе с этим синтез определенного ферментного белка (рис. 19). [c.46]

    Таким образом, биосинтез мРНК, контролирующий синтез белка в рибосомах, зависит от функционального состояния репрессора. Этот репрессор представляет собой тетрамерный белок с общей мол. массой около 150000. Если он находится в активном состоянии, т.е. не связан с индуктором, то блокирует ген-оператор и синтеза мРНК не происходит. При поступлении метаболита —индуктора —в клетку его молекулы связывают репрессор, превращая его в неактивную форму (или, возможно, снижают его сродство к гену-оператору). Структурные гены выходят из-под запрещающего контроля и начинают синтезировать нужную мРНК. [c.537]

    Было установлено, что экспрессия структурных генов (т.е. генов, кодирующих синтез белка) контролируется регуляторным геном. Последний определяет синтез репрессора, функция которого состоит в блокировании экспрессии структурного гена. В присутствии индуктора образуется комплекс репрессор-индуктор, и таким образом репрессор инактивируется, он больше не может влиять на структурные гены, и начинается экспрессия структурного гена, т.е. биосинтез белка. [c.60]


    Допустим, что речь идет о необходимости создать ферменты для некоторой последовательности реакций, заканчивающейся образованием продукта Р. Пусть для этой последовательности нужно три фермента. Тогда по схеме Моно и Жакоба этот продукт вступает в реакцию с одним из белков, производимым на особом участке ДНК, называемом геном-регулятором. Это соединение, так называемый репрессорный белок, в свою очередь, действует на систему, состоящую из участка ДНК, называемого оператором (ген-оператор), и участков, называемых структурными генами. На структурных генах и получается м-РНК, непосредственно используемая для синтеза требуемых белков-ферментов. Роль гена-оператора заключается в контролировании скорости использования структурных генов для синтеза белка. Если репрессор соединился с геном-оператором, блокировал его, то работа соответствующих структурных генов прекращается. В нашем примере ген-оператор должен контролировать деятельность трех участков ДНК, производящих нужные м-РНК и, следовательно, и ферменты для данной сложной реакции. Выключение оператора в результате фиксации на нем белка репрессора, связанного с продуктом реакции Р, прекращает и производство ферментов для реакции. Если концентрация продукта Р понизилась, оператор освободился от блокады, то синтез ферментов возобновляется и вся биохимическая машина запускается вновь. [c.189]

    Как и в случае репрессии, механизм индукции может быть реализован посредством изменения скорости синтеза белка-фермента или превращения готового неактивного предшественника в фермент. Кроме того, субстрат фермента также может при известных условиях связываться с молекулой специфического белка (репрессора) и действовать в качестве индуктора, включая структурный ген, контролирующий синтез того фермента, для которого данный субстрат является компонентом индуктора. [c.437]

    Репрессор представляет собой вещество белковой природы. Он синтезируется геном, расположенным на каком-то расстоянии от оперона. Этот ген называется геном-регулятором. Ген-регулятор непрерывно посылает в цитоплазму и-РНК, содержащую информацию для синтеза белков-репрессоров. Таким образом, функция гена-регулятора заключается в управлении синтезом молекул репрессора, которые затем соединяются с оператором и воздействуют на механизм включения структурных генов оперона. Работа гена-регулятора, вырабатывающего молекулы репрессора, направляется и контролируется цитоплазмой клетки и зависит от внешних условий. [c.160]

    Не все Г. хромосомы функционируют одновременно. Существуют механизмы, включающие или выключающие Г. в соответствии с потребностями клетки, к-рые контролируются особыми соед.-репрессорами и индукторами. Их способность одновременно регулировать синтез неск, белков связывают с тем, что соответствующие Г. примыкают друг к другу. [c.517]

    Согласно теории французских ученых — генетика Ф. Жакоба и биохимика Ж. Моно, соединения, которые индуцируют или репрессируют синтез того или иного фермента,- влияют на структурные гены путем двойной генетической детерминации. Структурные гены определяют молекулярное строение белков. Наряду с группой структурных генов в полинуклеотидной цепочке расположен так называемый ген-оператор, или оперой, — единица генетической регуляции. О п ер о н — группа генов, определяющих синтез группы функционально связанных ферментов. Оперон контролирует, т. е. включает и выключает, тот или иной структурный ген, от которого зависит синтез соответствующего фермента. Рядом с геном-оператором находится промотор, с которым связывается фермент ДНК-зависимая РНК-полимераза, синтезирующая матричную РНК, кодирующая синтез ферментов А и Б. Работа гена-оператора, в свою очередь, зависит от вещества, которое называется репрессором. Репрессор, по-видимому, имеет белковую природу и образуется под влиянием гена-регулятора. Репрессор может взаимодействовать с соединениями, индуцирующими синтез данного фермента (явление индукции), а также с соединениями, которые репрессируют его образование (явление репрессии). [c.477]

    Предполагается, что белки, содержание которых контролируется путем репрессии синтеза, постоянно образуются в клетке в виде двух изоформ. Репрессор подавляет синтез одной из изоформ и не влияет на процессы транскрипции и трансляции другой. [c.59]

    О произошло раньше, чем начнется воздействие индуктора. Индуктор, взаимодействуя с БР, так модифицирует его, что последний теряет способность связываться с О. В результате репрессия снимается и происходит транскрипция. Эту теорию можно расширить для случая, когда в клетке повышается концентрация какого-то катаболи-та. Тогда этот катаболит будет взаимодействовать с БР, снимая действие индуктора. Переключение с катаболического пути на анаболический осуществляется геном-регулятором ряда биосинтетических ферментов. Ген-регулятор контролирует синтез репрессора, который не может связываться с О до тех пор, пока к нему не присоединится конечный продукт. В генетическом анализе ген-регулятор обозначают как 7 -ген тогда 0-ген соответствует участку оператора, обладающему сродством к продукту -гена, а структурные гены контролируют синтез белков а, Ь, с и т. д., необходимых для осуществления метаболического процесса. [c.71]


    На рис. 27 показана, по А. С. Спирину, схема действия рибосомы. Фермент, осуществляющий соединение аминокислотных остатков, действует очень активно, так что цепочки 150 аминокислот получаются за 1,5—2 мин. ДНК не только организует синтез белка и определяет специфичность его, т. е. чередование аминокислотных остатков, но она еще является и частью системы, регулирующей синтез. В цепи ДНК имеются участки, которые контролируют образование особых веществ, называемых репрессорами. Репрессоры, насколько можно судить по неполным данным, представляют собой белки, способные блокировать ген и прекращать образование мРНК. Однако как только появляется вещество, подлежащее химической переработке (метаболит), репрессор связывается с ним, освобождает занятый им участок ДНК, и синтез соответствующих белков возобновляется. Согласованность действий частей этого механизма проявляется в том, что таким путем синтезируются именно те ферментные белки, которые нужны для переработки данного метаболита. [c.191]

    Примером гена, выражение которого не контролируется содержанием активного репрессора в клетке, может послужить ген la l, который сам определяет первичную структуру репрессорнэго белка. Низкая скорость синтеза белка — репрессора /ас-генов, обеспечивающая наличие всего десяти молекул репрессора на клетку,— остается неизменной при удалении или добавлении индукторов /ас-оперона. Поскольку десяти молекул активного репрессора на клетку достаточно для того, чтобы закрыть операторный ген la O, в клетке никогда не возникает необходимости синтезировать репрессор с большей скоростью. Следовательно, низкая постоянная скорость выражения гена /ас1 должна быть запрограммирована в ДНК Е. соИ с помощью какого-то другого механизма. Аналогичный вывод может быть сделан в отношении выражения других генов, продукты которых требуются в постоянных количествах. [c.490]

    В настоящее время известно много других примеров специфической репрессии бактериальных генов. В каждом случае связывание белка-репрессора с определенной последовательностью ДНК приводит к выключению гена. Процесс связывания всегда регулируется определенными сигнальными молекулами, аналогичными аллолактозе. Иногда, как в случае репрессора лактозного оперона, присутствие сигнальных молекул в клетке включает ген или единицу транскрипции, уменьшая сродство белка-репрессора к определенной последовательности ДНК. Но сигнальная молекула может использоваться и для выключения гена с помощью белка-репрессора. Например, аллостерическое изменение, вызванное связыванием сигнальной молекулы с репрессором, может повысить, а не понизить способность репрессора связываться с определенной последовательностью ДНК. Такой механизм действует в случае контроля активности пяти расположенных рядом генов, которые кодируют ферменты, необходимые для синтеза триптофана в клетках Е.соИ (trp-оперон). Синтез единственной длинной молекулы мРНК, кодирующей эти пять белков, контролируется белком-репрессором, который садится на ДНК лишь в том случае, если он связан с триптофаном (сигнальная молекула, включающая этот оперон) (рис. 10-12). [c.185]

    Первые исследования механизма генетического контроля были посвящены синтезу -галактозидазы, осуществляющей гидролиз дисахарида лактозы до моносахаридов глюкозы и галактозы в клетке Е. соИ. Опыты привели к открытию белка-репрессора лактозного оперона, включающего транскрипцию структурных генов (в данном случае, гена -галактозидазы, а также пермеазы и галактозид-транс-ацетилазы). Это достигается путем связывания репрессора с операторным участком ДНК длиной в 21 нуклеотид, перекрывающимся с последовательностью промотора. В результате блокируется доступ РНК-полимеразы к ее участку связывания и транскрипция цистронов делается невозможной. Для индукции и репрессии синтеза белка, т.е. изменения скорости процесса в противоположных направлениях, необходимо наличие в модели регуляторного механизма еще одного элемента индуктора, который должен, с одной стороны, контролировать действия белка-репрессора лактозного оперона, а с другой -быть связанным прямо или косвенно с функцией синтезируемого фермента. Такой индуктор действительно был обнаружен, и им оказался субстрат -галактозидазы лактоза, точнее, аллолактоза, близкая по строению и образующаяся в присутствии лактозы. [c.118]

    Транскрипция каждого гена контролируется его регуляторной областью, расположенной вблизи сайта, с которого начинается транскрипция в направлении от 5 - к З -концу. Эта область представляет собой участок двойной спирали ДНК и комплементарно связанные с ним регуляторные пептиды. Иными словами, регуляторные области генов представляют собой нуклеопротеиновые комплексы (НПК). В состав НПК входят белки двух типов репрессоры (они предотвращают транскрипцию гена) и факторы транскрипции, которые включают транскрипцию (Ja ob, Monod, 1961). Эти белки осуществляют контроль за экспрессией генов и синтезом белков, необходимых клетке на данном этапе существования, не расплетая двойной спирали ДНК. Как оказалось, для пептидных факторов транскрипции (ФТ) нет необходимости внедряться во внутренние области двойной спирали, так как на ее внешнюю поверхность экспонированы протон-донорные, протон-акцепторные и гидрофобные группы каждой пары оснований. [c.145]

    Репрессор может контролировать синтез к.-л. одного белка или целого ряда белков, экспрессия к-рых носит координированный характер. Как правило, это ферменты, обслуживающие один метаболич. путь их гены входят в состав одного оперона (совокупность связанных между собой генов и прилегающих к ним регуляторных участков). [c.217]

    Лактозный оперон (1ас-оперон) включает структурные гены трех ферментов X, V и А (отвечают за взаимозависимый синтез Р-галактозидазы, галактозилпермеазы и ацетилтрансферазы), контролирующих метаболизм лактозы в клетке (рис. 3.2). Экспрессия ферментов регулируется белком-репрессором — продуктом гена-регулятора (К), пространственно удаленного от гена-оператора (О). Субъединищ.1 репрессора (38кДах4) возникают с постоянной скоростью. Репрессор обладает высоким сродством к соответствующему оператору (К = моль/л). Именно белок-репрес-сор, будучи присоединен к гену-оператору, препятствует транскрипции структурных генов X, V и А. [c.38]

    Мы уже видели, что если в среде присутствует лактоза и нет глюкозы, то индуктор, соединяясь с репрессором, снимает его с оператора и тем самым дает возможность транскрибироваться /ас-генам и соответственно синтезироваться /ас-белкам. Предположим теперь, что в среде находятся и лактоза, и глюкоза. В этих условиях Е. oli использует только глюкозу, пренебрегая лактозой. Более того, клетки перестают синтезировать /ас-белки. Репрессия синтеза /ас-белков глюкозой называется катаболитной репрессией. Клетки Е. соИ способны чувствовать, доступна ли глюкоза, с помощью другого регуляторного механизма, который совместно с /ос-репрессором и оператором контролирует синтез 1ас-ферментов. [c.958]

    Типы регуляции репрессия и индукция. Репрессия означает подавление, а индукция, напротив, усиление синтеза одного или нескольких специфи-ческнх белков в результате действия на клетку какого-либо вещества, играющего регуляторную роль. Такие вещества — это низкомолекулярные соединения, часто являющиеся структурными аналогами либо конечного продукта (репрессия), либо субстрата (индукция) данного метаболического пути. Репрессибельность и индуцибельность также контролируются на генетическом уровне. Соответствующие гены гены-регуляторы) не обязательно располагаются рядом с теми оперонами, которые они контролируют. Ген-регу-лятор контролирует синтез особого продукта — апо)репрессора, взаимодействующего с оператором либо позитивно, либо негативно (фиг. 170). В пер- [c.535]

    Контролирующая система, поддерживающая лизогенное состояние, представляет собой парадокс. Присутствие белка-репрессора необходимо для его собственного синтеза. Это объясняет, как сохраняется лизогенное состояние. Однако как осуществляется первоначальный запуск синтеза репрессора При проникновении ДНК фага лямбда в новую клетку-хозяина бактериальная РНК-полимераза не способна транскрибировать ген с1, так как в клетке отсутствует репрессор, способствующий ее связыванию с промотором Рм- Но то же отсутствие репрессора означает, что промоторы Pr и Pl оказываются доступными. В результате первым событием при внедрении ДНК фага лямбда в бактериальную клетку является транскрипция генов N и его. Затем под действием белка pN транскрипция захватывает последующие области. В результате ген III (и другие гены) начинают транскрибироваться в процессе левосторонней, а ген сП (и другие гены)-в процессе правосторонней транскрипции (см. рис. 16.6). [c.216]

    La -penpe op служит типичным примером белка-негативного регулятора, при действии которого подавляется экспрессия контролируемых им генов. Действие репрессора в свою очередь контролируется низкомолекулярными эффекторами-в данном случае аллолактозой. В действительности /ас-оперон находится также под контролем белка-позитивного регулятора, вовлеченного одновременно в регуляцию целого ряда различных катаболитных систем Е. соН. Действие этого позитивного регулятора опосредованно контролируется оптимальным источником углерода-глюкозой. Глюкоза ингибирует транскрипцию генов /ас-оперона даже в присутствии лактозы, причем в штаммах I и O " в той же степени, что и в диких штаммах. Это означает, что действие глюкозы не влияет непосредственно на взаимодействие репрессора и оператора. Действие глюкозы реализуется через посредника, в роли которого выступает циклический АМР (с АМР). Содержание сАМР внутри клетки контролируется с помощью двух уравновешивающих друг друга процессов-синтеза при участии аденилатциклазы и деградации под действием фосфодиэстеразы (рис. 15.12). В отсутствие глюкозы наблюдается высокий, а в ее присутствии-низкий уровень с АМР в клетке. Механизм, благодаря которому содержание глюкозы в клетке контролирует уровень сАМР, неизвестен. Тем не менее не вызывает сомнений, что сАМР служит в качестве эффектора, отражающего этот аспект клеточного метаболизма. [c.181]

    Процессы, необходимые для выбора лизогенного пути развития, контролируются динамикой N-зависимой транскрипции генов сП в правом опероне и с1П в левом опероне. Мутации, инактивирующие какой-либо из этих генов, предотвращают лизогению и, подобно мутациям с1, проявляются в том, что соответствующие мутантные фаги образуют не мутные, а прозрачные бляшки. Белок сП является еще одним позитивным регулятором, избирательно активирующим транскрипцию генов, необходимых для развития по пути образования профага и подавления транскрипции левого и правого фаговых оперонов. Этот белок активирует транскрипцию с двух промоторов-Pr (промотор установления репрессии) и Р/ (промотор интегразы, см. гл. 14). Транскрипт, образующийся с первого из них, обеспечивает высокий уровень синтеза основного репрессора фага X, белка с1. Второй транскрипт направляет синтез интегразы, необходимой для встраивания ДНК фага в бактериальную хромосому. Эти транскрипты отмечены на рис. 15.13 волнистыми стрелками. Белок сШ необходим только для защиты белка сП от клеточных протеиназ, которые в отсутствие сШ быстро инактивируют сП. [c.187]

    Вместе с продуктом гена lex А Re А-белок играет ведущую роль в регуляции SOS-реакцин клетки. Как уже отмечалось, продукт гена lex А — это репрессор, контролирующий SOS-регулон, т. е. около 20 генов, которые индуцируются в ответ на воздействия, повреждающие ДНК или тормозящие ее синтез. В число этих генов входит и ген гее А. В присутствии АТФ и образующихся однонитевых (или каких-то иных производных) ДНК стимулируется протеи-назная активность Re А-белка и он расщепляет Lex А-белок. Таким образом, он дерепрессирует и свой собственный синтез, т. е. является позитивным ауторегулятором. Экспрессия генов SOS-регулона активирует процессы репарации и мутагенеза и подавляет деление клетки, поскольку среди индуцируемых находится и ген sul А, контролирующий синтез ингибитора клеточного деления. После прекращения действия повреждающих агентов содержание Lex А-белка [c.55]


Смотреть страницы где упоминается термин Синтез белка гем-контролирующий репрессор: [c.231]    [c.239]    [c.318]    [c.53]    [c.302]    [c.185]    [c.485]    [c.71]    [c.276]    [c.194]    [c.24]    [c.117]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.181 , c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Белок-репрессор



© 2025 chem21.info Реклама на сайте